

Thank you for purchasing the 486PH system board. This document will aid you to configure and to install this system board properly. The document is prepared with our best knowledge; however, we make no representation or warranty concerning the contents or use of this manual, and specifically disclaim any expressly implied warranties or merchant ability or fitness of any particular purpose. The information in this document is subject to change without notice.

This document contains information protected by copyright. All rights are reserved. No part of this document may be used or reproduced in any form or by any means, or stored in a database or retrieval system, without prior written permission.

Trademarks

- . Intel is a registered trademark of Intel Corporation.
- . IBM is a registered trademark of International Business Machines Corporation.
- . Microsoft is a registered trademark of Microsoft Corporation.
- . PCI is a registered trademark of PCI Special Interest Group.
- . All other trademarks used in this manual are the property of their respective owners.

PREFACE

TRADEMARKS

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

PRODUCT OVERVIEW

FEATURES PRODUCT SPECIFICATIONS

CHAPTER 2: BOARD'S JUMPERS & CONNECTORS

JUMPER DESCRIPTIONS

CPU JUMPERS CACHE MEMORY JUMPERS SYSTEM BOARD STANDARD JUMPERS CONNECTOR DESCRIPTIONS PC/AT STANDARD CONNECTORS PERIPHERAL CONNECTORS

CHAPTER 3: HARDWARE INSTALLATION

BUILDING A HIGH PERFORMANCE SYSTEM CPU INSTALLATION COOLING FAN INSTALLATION INSTALLING DRAM SIMMS DRAM SIMMS CONFIGURATION PERIPHERAL DEVICE CONNECTION PERIPHERAL ADD-ON CARD INSTALLATION

CHAPTER 4: SYSTEM SETUP

SYSTEM CMOS

ENTERING CMOS SETUP SETUP WINDOW ADVANCED SETUP CHIPSET SETUP POWER MANAGEMENT SETUP UTILITY WINDOW SECURITY SETUP WINDOW DEFAULT SETUP WINDOW SYSTEM BOARD CONFIGURATION PROGRAMMING FLASH BIOS

APPENDIX A: KEYBOARD HOT KEYS

APPENDIX B AMI BIOS HARD DISK TYPE

APPENDIX C: ISA I/O ADDRESS MAP

APPENDIX D: MEMORY MAPPING

APPENDIX E: INTERRUPT LEVEL ASSIGNMENTS

PRODUCT INFORMATION RECORD

CHAPTER 1: INTRODUCTION

PRODUCT OVERVIEW

The 486PH system board adds to our product line a highly integrated and cost effective solution, without compromising performance or quality. Intel, AMD, & Cyrix 486 CPUs are supported on the 486PH system board. With top CPU speed at 100MHz and integrated Write-Back cache, the 486PH dramatically boosts system throughput for even the most demanding applications.

Features

• Supports Intel, AMD, Cyrix CPUs.

Cache Memory

CPU Support

• Supports 128K, 256K, and 512K Fast External Write-back Cache memory.

System Memory DRAM

- 4 Banks of Memory that support 256Kx36, 512Kx36, 1Mx36, 2Mx36, 4Mx36, & 8Mx36 72-pin SIMMs.
- Up to 64MBytes on-board memory.

System BIOS

- AMI BIOS with Built-in Window Standard CMOS, Advanced CMOS, Advanced Chipset, Configuration Utilities, Password, Power Management Setup Menus.
- Optional Flash BIOS supports ISA Plug & Play feature.

System Chipset

- Intel ARIES EPA Green 82420EX PCI Level 2 Chipset.
- Sophisticated System Power Management.
- Supports Level 1 Write-Back CPU.

Bus Slots

- Three 32-bit PCI Bus Mastering slots (One is sharing slot).
- Two 32-bit VL-Bus Mastering slots.
- Five ISA slots.

On-Board IDE Port

- 32-bit PCI IDE supports Mode 3 Timing.
- Support Logical Block Address to configure more than 528MB HDD.
- Auto-configuring.

Real Time Clock

• Real Time Clock with built-in Battery to provide accurate timer clock.

Board Form Factor

• Standard PC/XT (or PC/AT) form factor and mounting holes.

Electrical

Typical Power: +5V Tolerance 5%, current 4.5A. +12V Tolerance 10%, current 100mA. -5V Tolerance 5%, current 150mA. -12V Tolerance 10%, current 100mA.

Environmental

Operating temperature (ambient	c): $O^{0}C/32^{0}F$ to $55^{0}C/131^{0}F$
Storage temperature	-20°C/-4°F to 70°C/158°F
Operating Humidity:	10% to 90% (non-condensing)
Storage Humidity:	5% to 95% (non-condensing)
•	

Dimensions

Width:

Length:

8.7 inches (221.0 mm)10.8125 inches (274.5 mm)

CHAPTER 2: BOARD'S JUMPERS & CONNECTORS

When working with the 486PH, it is extremely important that you avoid Electrical Static Discharge (ESD). Always ground yourself by wearing a grounded wristband or ankle strap.

Figure 1 on the next page shows the component layout of the 486PH system board with locations of the system board jumpers and connectors. Note that most of the jumpers and connectors on the system board are labeled with proper names with pin 1 marked as '1'. To avoid damaging the board and to ensure proper operation, caution should be taken when connecting these jumpers and connectors.

JUMPER DESCRIPTIONS

Jumpers are used to select between various operating modes. A jumper switch consists of two, three, or four gold pins projecting from the system board. Placing the plastic jumper cap over two pins connects those pins and makes a particular selection. Using the jumper cap to cover two pins in this way is referred to as shorting those pins. If the cap is not placed on any pins at all or placed on only one pin, this is referred to as leaving the pins open.

Note: When you open a jumper, leave the plastic jumper cap attached to one of the pins so you don't lose it.

PINS 1-2 SHORTED

2-pin jumper

3-pin jumper

СРИ Туре	JP10	JP16	JP23	JP24	JP25
Intel 486SX	Short	Open	Open	2-3	1-2
Intel 486DX, DX2,	Short	Open	Open	1-2	1-2
DX4 (Default)					
AMD 486DX,	Short	Open	Short	1-2	2-3
DX4*					
AMD 486DX2*	Short	Open	Open	1-2	2-3
Cyrix 3.3-Volt	Short	Short	Short	1-2	2-3
486DX, DX2					
Cyrix 5-Volt	Short	Open	Short	1-2	2-3
486DX, DX2					

CPU Type Selection Jumpers

* Chipset auto detects AMD 3.3-Volt and 5-Volt CPUs, no special jumper setting is required.

CPU Clock Frequency Selection Jumpers

If you are installing an 486DX or 486SX CPU, the internal CPU clock speed is the same as the external CPU clock speed. This is different for 486DX2 CPU where the external speed is one-half of the internal speed. For example, a 486DX2-66 has an external clock speed of 33MHz.

Clock	CPU supported	JP6	JP19	JP20	JP21
riequency					
33 MHz	486SX-33	1-2	Open	Short	Short
	487SX-33				
	486DX-33				
	486DX2-66				
	486DX4-100				
	P24T				
25MHz	486SX-25	2-3	Short	Open	Open
	487SX-25			-	-
	486DX-25				
	486DX2-50				
	486DX4-75				

Cache Memory Size Jumpers

Three cache memory sizes are supported. The jumpers are set according to the size of Cache Memory installed.

Cache Size	JP8	JP9	JP11	JP12
128KB	Short	Open	Open	Open
256KB	Open	Short	Short	Open
256KB*	Short	Open	Short	Open
512KB	Short	Open	Short	Short

Cache Installation Table

Cache Size	U23, U26, U29, U31	U24, U27, U30, U32	U13 & U16
128KB	32Kx8	None	32Kx8
256KB	32Kx8	32Kx8	32Kx8
256KB*	64Kx8	None	32Kx8
512KB	128Kx8	None	32Kx8

* If 256KB with 64Kx8 SRAM type is installed, in the BIOS CMOS Chipset Setup menu, L2 Cache Configuration must set to N-Leaved.

CMOS Discharge Jumper

The jumper JP1 is used to clear all information, including password that are currently stored in the CMOS RAM. (ODIN OEC12C887A on 486PH board.). It is typically used when you forget the password that you selected previously and you cannot get into CMOS setup menu.

Function	JP1
Normal Operation (Default)	1-2
Clear CMOS Data	2-3

Monitor Type Select Jumper

This is PC/AT compatible jumper to inform the system BIOS that the graphic card installed is CGA type or EGA, VGA, and Monochrome type. Thus, the jumper should be set accordingly to the type of graphic card installed in the system.

Display Type	JP2
VGA, EGA, or Monochrome (Default)	Open
CGA	Short

TURBO Jumper

Function	TURBO
Enable TURBO mode (Default)	Short
Disable TURBO mode.	Open

Manufacturer Reserved Jumper

The jumper setting show below are factory installed. Manufacturer has reserved these jumpers. No modification is allowed.

Jumper	Setting
JP3	1-2
JP14	1-2

CONNECTOR DESCRIPTIONS

Following is the list of 486PH system board connectors required to be installed for proper system operation. For detailed descriptions of these components, please refer to the next section. To avoid damaging the board and to have proper operation, caution should be taken when connecting these components.

- Power supply connectors (PS1 and PS2)
- Keyboard connector (CN1)
- Reset connector (RESET)
- Power LED and keyboard lock connector (KLOCK)
- Speaker connector (SPKR)
- Turbo Switch connector (TURBO)
- Turbo LED connector (TBLED)
- Hard Disk Activity LED connector (HDLED)
- IDE Interface connector (IDE1)

Power Supply Connectors (PS1 and PS2)

The two Power Supply connectors (PS1 and PS2) are 6-pin AT standard power connectors. Most power supplies have two six-wire connectors, two of the wires on each connector are black. Align the two six-wire connectors so that the two black wires on each connector are in the middle as shown below.

Pin	Connector PS2	Connector PS1
1	Power Good	Ground (Black)
2	+5 VDC	Ground (Black)
3	+12 VDC	-5 VDC
4	-12 VDC	+5 VDC
5	Ground (Black)	+5 VDC
6	Ground (Black)	+5 VDC

Keyboard Connector

The keyboard connector (CN1) is a 5-pin, circular-type DIN socket. It is used to connect the system board keyboard interface to any standard AT-compatible keyboard. (84 or 101 - key type keyboards). The pin assignments are listed below:

Pin	Description	
1	Keyboard Clock Signal	
2	Keyboard Data Signal	
3	Not Used	
4	Ground	
5	+5V Fused VDC	

Reset Connector

The system RESET connector (RESET) is a 2-pin BERG strip. It is used to connect the push button reset switch located on the front panel to the system board. System reset can be done by shorting pin 1 to pin 2 with the same effect as turning the power off and then on again.

Pin	Description	
1	Ground	
2	Reset Input	

Power LED and Keyboard Lock Connector

The Power LED and Keyboard Lock connector (KLOCK) is 5pin keyed BERG strip. It is used to connect +5 VDC power to the power indicator LED at the front panel and connect security keyboard lock to the keyboard controller. This allows you to switch off the keyboard and so provide limited security against casual intruders. The pin assignments are indicated below:

Pin	Description			
1	Power LED			
2	Key (No Connection)			
3	Ground			
4	Keyboard Lock			
5	Ground			

Speaker Connector

The Speaker connector (SPKR) is a 4-pin keyed BERG strip. It is used to connect an external 2-inch, 8-ohm speaker to the system board to provide sound capability. The pin assignments are defined below:

Pin	Description		
1	Speaker Data Out		
2	Key (No Connection)		
3	Ground		
4	+5 VDC		

Turbo Switch Connector

The Turbo switch (TURBO) is a 2-pin BERG strip. It is used to connect the front panel 2-position push switch to the system board speed switching circuitry. The Turbo mode is set as default on the 486PH.

Function	TURBO
Enable TURBO Mode (Default)	Short
Disable TURBO Mode	Open

Turbo LED Connector

The Turbo LED connector (TBLED) is a 2-pin BERG strip. It is used to connect a CPU operating frequency indicator LED from the front panel to the system board. The pin assignments are indicated below:

Pin	Description		
1	LED Cathode (-)		
2	LED Anode (+)		

Hard Disk Activity LED Connector

The hard disk activity LED connector (label as HDLED) is a 2pin keyed BERG strip. The LED will be on whenever there is data transfer activity on on-board IDE bus. The connector should be connected to the case's front panel hard disk LED.

Pin Description				
1	LED Anode (+)			
2	LED Cathode (-)			

IDE Interface Connectors

The on-board 32-bit PCI IDE Interface connector (IDE1) is a 2x20-pin male header. This interface supports up to two hard disk drives on the system. Pin assignment of IDE is as follow:

Pin	Description	Pin	Description
2	Ground	1	IDE Reset/
4	Data 8	3	Data 7
6	Data 9	5	Data 6
8	Data 10	7	Data 5
10	Data 11	9	Data 4
12	Data 12	11	Data 3
14	Data 13	13	Data 2
16	Data 14	15	Data 1
18	Data 15	17	Data 0
20	No Connection	19	Ground
22	Ground	21	No Connection
24	Ground	23	I/O Write/
26	Ground	25	I/O Read/
28	ALE	27	No Connection
30	Ground	29	No Connection
32	IOCS16/	31	IDE IRQ 14
34	No Connection	33	Address A1
36	Address A2	35	Address A0
38	IDE Chip Select 1/	37	IDE Chip Select 0/
40	Ground	39	IDE Active/

CHAPTER 3: HARDWARE INSTALLATION

BUILDING A HIGH PERFORMANCE SYSTEM

The dimensions of the 486PH system board are designed to fit perfectly in a PC/XT (or PC/AT) standard case. To build a complete high performance system based on the 486PH system board, the following equipment are needed:

- 1. A chassis with dimensions similar to PC/XT/AT standard chassis. The chassis should have a front panel with connectors for Reset, Power, Keylock, Turbo switch, Turbo LED, Speaker. AC power cable should be included with the chassis. A standard AT 230W power supply should be capable of providing a continuous power within a +4.75 VDC to +5.25 VDC range. A power line filter may be needed for areas with noisy transmission.
- 2. One or two floppy drives (360K/1.2M/1.44M/2.88M).
- 3. SCSI Hard disk drive or IDE hard disk drive with a hard disk controller.
- 4. Video card (Monochrome, CGA, EGA, VGA).
- 5. A video display monitor.
- 6. An AT-compatible keyboard (84 or 101 Keyboard).
- 7. The following additional peripherals will be useful to enhance the system:
 - A bus or serial mouse.
 - A tape back up drive.
 - A CD-ROM drive.
- 8. Cables
 - A set of flat cables for floppy drive and hard disk drive.
 - AC Power cable (Usually Comes with power supply in case)
- 9. Tools
 - Set of Screw drivers, Cutter, Pliers

CPU INSTALLATION

Care should be taken when installing the CPU into the Zero Insertion Force (ZIF) socket on the system board. Lift the handle of ZIF socket up. Place the Processor into the ZIF socket. No force should be required to insert the CPU. On the processor's pin 1 is with the square base and it goes to particular hole on the socket. Match the hole and pin one first and then easily insert the processor into the socket. Press the handle gently down.

!! Important !!

Mount the cooling kit with fan on top of the CPU. Connect power to fan from power supply. Make sure the cooling kit's bottom surface makes proper contact with top surface of CPU.

!! Warning !!

Manufacturer of the board or CPU is not responsible for damage to CPU because of improper handling during installation or cooling kit with fan is not used.

INSTALLING DRAM SIMMS

- 1. Power must be off while installing SIMMs.
- 2. The SIMM module should face to the right with pin 72 next to the power supply connectors.
- 3. Insert the SIMM at a 45 degree angle, tilted towards ISA slots.
- 4. Gently push the SIMM to an upright position until it "snaps" into place.
- 5. Repeat above steps until the entire bank is filled.

The on-board DRAM memory sub-system has four module mounting sockets which are divided into "banks" of one socket each. They support 256Kx36, 512Kx36, 1Mx36, 2Mx36, 4Mx36, and 8Mx36 DRAM SIMMs. DRAM speed must be 70ns or faster. You can configure the memory of the 486PH in a variety of ways as follows.

SIMM1	SIMM2	SIMM3	SIMM4
1Mx36	1Mx36 4Mx36	None	None
1Mx36	1Mx36 4Mx36	1Mx36 4Mx36	None
1Mx36	1Mx36 4Mx36	1Mx36 4Mx36	1Mx36 4Mx36
2Mx36	None	None	None
2Mx36	2Mx36 8Mx36	None	None
2Mx36	2Mx36 8Mx36	None	1Mx36 4Mx36
2Mx36	1Mx36 4Mx36	None	None
2Mx36	1Mx36 4Mx36	None	1Mx36 4Mx36
4Mx36	4Mx36	None	None
4Mx36	4Mx36	4Mx36 None	
4Mx36	4Mx36	4Mx36 4Mx3	
8Mx36	None	None	None
8Mx36	8Mx36	None None	
8Mx36	1Mx36 4Mx36	None	None
8Mx36	1Mx36 4Mx36	None	1Mx36 4Mx36

IDE Hard Disk Drives Connection

The 486PH supports up to 2 IDE hard disk drives on the system. The IDE ribbon-cable is provided with the system board. Use the cable to connect the IDE drives into 40-pin double-row connector IDE on the board. Make sure the colored stripe on the cable (indicating the location of pin 1) matches Pin 1 of the connector on the mother board, as well as the Pin 1 of the Hard drives.

Peripheral Add-on Card installation

The 486PH support both PCI slots and VESA VL bus slots. You can install the corresponding add-on cards into any of these slots. Make sure these add-on cards' interrupts or DMA channels are not conflicted with each other. The best way to remember is to writing down the information of all the installed cards into the back of this manual for later reference.

Please refer to the manuals shipped with the add-on cards for more information. Care should be taken when inserting the cards into the slots to make sure the connectors slots are not damaged.

CHAPTER 4: SYSTEM SETUP

SYSTEM CMOS

You need to setup the system CMOS every time:

- You start a new and un-configured system
- You receive a start-up error message indicating the configuration information stored in the non-volatile CMOS RAM has somehow become corrupted.
- You add, remove, or change peripherals from your system.
- You add, remove, or change DRAM from your system.

The first time you power up the system, the configuration information stored in the battery-backed CMOS RAM may not be correct. The BIOS detects this condition and prompts the user to go through the SETUP section. This chapter explains how to use the BIOS SETUP program and make the appropriate entries.

Some of the parameters are already factory preset and do not need to be changed. Please read the instructions carefully and only change the settings if necessary.

Entering CMOS Setup

AMIBIOS provides a Built-in Setup utility that can be accessed by pressing < Del > key at the appropriate time during system boot up. Configuration data is stored in system CMOS RAM.

Following windows will appear in the AMIBIOS Setup main screen. Details of the setup options in each window is given in the following sections.

Setup Window

Types of Setup	Description			
Standard Setup	Sets time, date, hard disk type, types of floppy drives, display type, and if Keyboard is installed.			
Advanced Setup	System Boot Up Numlock, System Boot Up Sequence, Internal & External Cache Memory, Adapter Shadow Cacheable, and many others.			
Chipset Setup	Sets chipse-specific options and features.			
Power Management Setup	Control power conservation options.			

Standard Setup

Standard Setup is selected from the Setup window in the main screen. Standard setup options described in this section are selected by choosing the appropriate high-level icon from the Standard Setup screen. All displayed icons are described in this section, although the screen display is often all you need to understand how to set the option.

Date, Day and Time Configuration

Select the Standard option. Select the Date and Time icon. The current values for each category are displayed. Enter new values through the keyboard.

Master Hard Disk:

Slave Hard Disk:

Select one of these hard disk drive icons to configure the drive named in the option. A scrollable screen that lists all valid disk drive types is displayed. Select the correct type and press < Enter >. Note that a hard drive will not work properly if you enter incorrect drive parameter. If the hard disk drive is an IDE type, select *Detect C: or Detect D:* from the Utility section of the BIOS Setup main menu to automatically detect the IDE drive parameters and report them to this screen.

You can also manually enter the hard disk drive parameters. The drive parameters are:

Parameter	Description			
Туре	The number for a drive with certain			
	identification parameters.			
Cylinders	The number of cylinders in the disk			
	drive.			
Heads	The number of heads.			
Write	The size of a sector gets progressively			
Precompensation	smaller as the track diameter			
	diminishes. Yet each sector must sill			
	hold 512 bytes. Write precompensation			
	circuitry on the hard disk compensates			
	for the physical difference in sector			
	size by boosting the write current for			

Parameter	Description						
	sectors on inner tracks. This parameter						
	is the track number where write						
	precompensation begins.						
Landing Zone	This number is the cylinder location						
	where the heads will normally park						
	when the system is shut down.						
Sectors	The number of sectors per track. MFM						
	drives have 17 sectors per track. RLL						
	drives have 26 sectors per track. ESDI						
	drives have 34 sectors per track. SCSI						
	and IDE drive may have even more						
	sectors per track.						
Capacity	The formatted capacity of the drive is						
	(Number Of heads) x (Number of						
	cylinders) x (Number of sectors per						
	track) x (512 bytes per sector)						

Floppy Drive A:

Floppy Drive B:

Move the cursor to these fields and press <Enter> then select the floppy type. The settings are 360 KB 5.25", 1.2 MB 5.25", 720 KB 3.5", 1.44 MB 3.5", or 2.88 MB 3.5". "Not Installed" could be used as an option for diskless workstation.

Primary Display

Select the type of display monitor and Display controller card. The VGA/EGA, CGA 40x25, CGA 80x25, or Monochrome are supported. 'Absent' option could be used if the system does not have display card installed or for display cards that use TSR files instead of BIOS firmware. The Optimal & Fail-Safe default setting are VGA/EGA..

System Boot Up Num Lock

When the computer boots up, BIOS can either select Numeric value or Cursor control functions for the numeric keypad of IBM compatible keyboards. Most extended compatible keyboards have separate cursor control keys. Therefore, the default setting should be "On" to select Numeric value function for the numeric keypad.

Floppy Drive Seek at Boot

This option allows the system BIOS to look for the floppy diskette in the floppy drives during boot up process. This is often set to disabled for systems which do not have floppy drives. The default setting is *Disabled*..

Floppy Drive Swapping

This option allows the system to swap between two floppy drives, drive A to drive B or vice versa, without physically changing the cable setup. When Enabled is selected, floppy drive A will become B, and floppy drive B will become A The Optimal and Fail-Safe settings for this option are *Disabled*.

System Boot Up Sequence

System can either boot up from floppy drive or from hard disk drive. Selecting option A:, C: will force the BIOS to look for bootable operating system files from floppy drive A: first before look for files from drive C:. Reverse this sequence by selecting C:, A:. The Optimal & Fail-Safe default setting is A:, C:.

External Cache Memory

This option enables secondary (external) on-board cache memory. The Optimal default setting is *Enabled*. The Fail-Safe default setting is *Disabled*.

Internal Cache Memory

This option enables internal (on the microprocessor) cache memory. The Optimal and Fail-Safe default setting are *Enabled*.

Password Checking

If the "Always" option is chosen at Setup, each time the system is turned on, the prompt request for user password will appear.

If the "Setup" option is chosen at Setup, the Password prompt will not appear when the system is turned on, but will appear if the user attempts to enter the Setup program.

The board is shipped with the Password Checking option disabled. To enable this option, you have to select your password by select the Password icon in the Security window of the main menu screen.

If you want to 'disable the Password Checking option, go to the Security Menu and select Password icon to change to new password. You will be asked to enter the old password before you can enter the new password. However, do not enter any character when you are asked to enter new password, simply press <Enter> key two times. The message to indicate that the Password Checking is disabled will appear.

Video Shadow C000 & C400, 16K

When this option is set to *Enabled*, the video ROM code, that normally mapped into memory address space from C0000h -C7FFFh is copied (shadowed) from ROM to the system DRAM for faster execution. This will significantly improve the display performance of the system. The settings are Absent, No Shadow, or Shadow. The Optimal default setting is *Enabled*. The Fail-Safe default setting is *Disabled*.

Shadow C800, 16K Shadow CC00, 16K Shadow D000, 16K Shadow D400, 16K Shadow D800, 16K Shadow DC00, 16K

These options are to selectively shadow the ROM code on the add-on cards, that mapped into the corresponding memory address space, into the respectively system DRAM address space, for faster execution. However, since some of add-on cards may not work properly if their ROM code are shadowed, care should be taken when select these option. The Optimal and Fail-Safe default setting are *Disabled*.

Palette Snooping

This option should be Enabled when running with a Multimedia Video Processor Card. Once enabled, the address space of PCI VGA Palette can be snooped, so Multimedia card may obtain the color information from the Video Processor and overlay. The Optimal and Fail-Safe default settings are *Disabled*.

IDE Block Mode

Select *Enabled to support* some latest IDE hard disks that supporting multiple sector data transfer for faster performance. In Auto mode, the BIOS will detect if the IDE drives can handle fast data transfer mode and then programs the controller accordingly. The Optimal default setting is *Auto*. The Fail-Safe default setting is *Disabled*.

32-bit Xfer Primary Controller

This option is used to support the first IDE controller that can support 32-bit data transfer by moving two consecutive words per cycle, for better performance. Select Enabled if the controller can support this mode, otherwise, set it to Disabled. The Optimal and Fail-Safe settings are *Disabled*.

Set LBA Primary Controller

Most of early IDE hard drives' size are less than 528MB because of the limitation from PC/AT standard specification. In order to support more than 528MB, the Logical Block Access (LBA) mapping mode must be used. When Primary IDE controller card is installed, Select *Enabled* for Master IDE hard disk that supports LBA mode for larger than 528MB capacity. The Optimal and Fail-Safe default setting are *Disabled*.

Secondary Controller Setup

This option supports Second IDE controller present in the bus or some IDE controllers that support dual IDE ports. The Optimal and Fail-Safe default setting are *None*.

The BIOS Setup options described in this section are selected by choosing the option from the Chipset Setup screen. Chipset Setup is selected from the Setup section on the BIOS Setup main menu.

CPU to PCI Bursting

This option enables/disables PCI burst cycles for CPU-PCI write cycles where back-to-back sequential CPU memory writes are sent out on the PCI bus as a burst cycle. This option may help to improve Video performance significantly. The Optimal default setting is *Enabled*. The Fail-Safe default setting is *Disabled*.

CPU to PCI Byte Merge

Byte merging permits the motherboard controller to merge the data of consecutive CPU-to-PCI byte/word writes within the same double-word address, into the posted write buffer location. The merged collection of bytes then sent over the PCI bus as a single double-word. Byte merging is performed in the compatible VGA range only (0A0000-0BFFFFh) to improve video performance. The Optimal default setting is *Enabled*. The Fail-Safe default setting is *Disabled*.

Cache Write Wait State

Select "Normal" for 1 waitstate cache write cycles. Select "Fast" for 0-waitstate cache write cycle. The Optimal and Fail-Safe default setting are *Normal*.

L2 Cache Configuration

This option is reserved for Manufacturer use only. Select *Non-Interleaved* for 256KB cache with 64Kx8 SRAM type installed into the system. Normally select *Interleaved*.

Set IRQ Priority

Three availiable interrupt requests (IRQ) 9, 10, and 11. Their priorities can be interchanged for PCI Bus adapters. For example, if you select "9,10,11" then IRQ9 will be assigned to the first PCI adapter then IRQ10 will be assigned for the second PCI adapter if it is needed. The Optimal and Fail-Safe default setting are 9,10,11.

Power Management Setup

The 486PH supports Green or Energy saving features. With the Power Management option enabled, the system BIOS will automatically disable or will stop the operation of the system peripheral devices as well as system CPU when the system is in idle mode for a certain period of time. This will save energy that is consumed by these devices.

Advanced Power Management

This option enables system power management. The Optimal and Fail-Safe default setting are *Disabled*.

IDE Drive Power Down

Once this option is Enabled, the IDE hard drive will stop spinning and the system goes into the power saving mode. The Optimal and Fail-Safe default setting are *Disabled*.

VESA Video Power Down

This option enables the Video screen will go off to save power after a number of preset minutes (Timeout Value) of no access. The Optimal and Fail-Safe default setting are *Disabled*.

Timeout Value

This option determines the time delay before the system goes into the power saving mode from the idle states. The Optimal & Fail-Safe default setting, when Advanced Power Management option is enabled, are 5 *Min*.

Detect Master Drive

This utility detects parameters for IDE hard drive configured as first drive (master) in dual drive system or the only drive in system. The parameter detected will be automatically transfer into Standard setup menu. This utility will work with most of later IDE hard drives. However, some old IDE hard drives may not be detected correctly. If this is the case, you should enter the parameters of the hard drives manually.

Detect Slave Drive

This option is to detect the parameter of the secondary drive.

Color Set

This utility allows you to select the comfortable color sets for the CMOS Setup and Utility screens.

Security Setup Window

Password

Allows to set password user will be asked to enter before entering into AMIBIOS setup

Anti-Virus

When Virus Protection is enabled, the system BIOS will display a warning message every time any program tries to write into the disk boot sectors. The Default Setup windows has following options. Every option in BIOS Setup contains two default values: a Fail-Safe default and the Optimal default value.

Original Defaults

Restores old values of setup if user decides to abandon changes.

Optimal Defaults

The Optimal default values provide optimum performance settings for all devices and system features. If onboard SCSI, floppy controller, I/O controller are used in the system, the Optimal default setting should be loaded to simplify the CMOS setup process.

Fail-Safe Defaults

The Fail-Safe default settings consist of the safest set of parameters. Use them if the system is behaving erratically. They should always work but do not provide optimal system performance characteristics.

Once this option is loaded, user should go back to the first selection setup menu to manually select other options.

SYSTEM BOARD CONFIGURATION

Programming Flash BIOS

To support FLASH BIOS, component at location U4 must be FLASH EPROM. Follow these steps to reprogram FLASH BIOS:

- 1. Turn the system power ON.
- 2. During boot up, press "Del" key to go to CMOS setup.
- 3. In CMOS setup, go to "Advanced Setup" to set the "External Cache Memory" to DISABLED.
- 4. Save the setup and reboot the system to A: or C: drive.
- 5. Run AMIFLASH.COM Program from the Utility Diskette to load the new BIOS code into the FLASH EPROM.
- 6. After programming is completed, shut the system off.
- 7. Turn the system power ON again and repeat the above steps 2 to 4 to set the "External Cache Memory" back to ENABLED.
- 8. Reboot the system.

APPENDIX A: KEYBOARD HOT KEYS

SYSTEM SPEED

System speed can also be changed through keyboard. There are two available speeds as shown below:

Turbo speed: Cache memory and 32-bit DRAM transfer mode are ON. Set by pressing <+> key once while holding <**Ctrl**>, <**Alt**>, and <**Shift**> keys.

Slow speed: Cache memory and 32-bit DRAM transfer mode are OFF. Set by pressing <-> key once while holding <**Ctrl**>, <**Alt**>, and <**Shift**> keys.

APPENDIX B AMI BIOS HARD DISK TYPE

Туре	Cylinder	Heads	Write	Landing Zone	Sectors	Size
1	306	4	128	305	17	10MB
2	615	4	300	615	17	20MB
3	615	6	300	615	17	31MB
4	940	8	512	940	17	62MB
5	940	6	512	940	17	47MB
6	615	4	65535	615	17	20MB
7	462	8	256	511	17	31MB
8	733	5	65535	733	17	30MB
9	900	15	65535	901	17	112MB
10	820	3	65535	820	17	20MB
11	855	5	65535	855	17	35MB
12	855	7	65535	855	17	50MB
13	306	8	128	319	17	20MB
14	733	7	65535	733	17	43MB
16	612	4	0	663	17	20MB
17	977	5	300	977	17	41MB
18	977	7	65535	977	17	57MB
19	1024	7	512	1023	17	60MB
20	733	5	300	732	17	30MB
21	733	7	300	732	17	43MB
22	733	5	300	733	17	30MB
23	306	4	0	336	17	10MB
24	925	7	0	925	17	54MB
25	925	9	65535	925	17	69MB
26	754	7	754	754	17	44MB
27	754	11	65535	754	17	69MB
28	699	7	256	699	17	41MB
29	823	10	65535	823	17	68MB
30	918	7	918	918	17	53MB

Туре	Cylinder	Heads	Write Precomp	Landing Zone	Sectors	Size
31	1024	11	65535	1024	17	94MB
32	1024	15	65535	1024	17	128MB
33	1024	5	1024	1024	17	43MB
34	612	2	128	612	17	10MB
35	1024	9	65535	1024	17	77MB
36	1024	8	512	1024	17	68MB
37	615	8	128	615	17	41MB
38	987	3	987	987	17	25MB
39	987	7	987	987	17	57MB
40	820	6	820	820	17	41MB
41	977	5	977	977	17	41MB
42	981	5	981	981	17	41MB
43	830	7	512	830	17	48MB
44	830	10	65535	830	17	69MB
45	917	15	65535	918	17	114MB
46	1224	15	65535	1223	17	152MB
47	USER'S	TYPE				

APPENDIX C: ISA I/O ADDRESS MAP

I/O ADDRESS	I/O DEVICE		
000 - 01F	DMA Controller 1, 8237A-5		
020 - 03F	Interrupt Controller 1, 8259A		
040 - 05F	System Timer, 8254-2		
060 - 06F	8742 Keyboard Controller		
070 - 07F	Real-Time Clock/CMOS and NMI Mask		
080 - 09F	DMA Page Register, 74LS612		
0A0 - 0BF	Interrupt Controller 2, 8259A		
0C0 - 0DF	DMA Controller 2, 8237A-5		
0F0 - 0FF	i486 Math Coprocessor		
1F0 - 1F8	Fixed Disk Drive Adapter		
200 - 207	Game I/O		
20C - 20D	Reserved		
21F	Reserved		
278 - 27F	Parallel Printer Port 2		
2B0 - 2DF	Alternate Enhanced Graphic Adapter		
2E1	GPIB Adapter 0		
2E2 - 2E3	Data Acquisition Adapter 0		
2F8 - 2FF	Serial Port 2 (RS-232-C)		
300 - 31F	Prototype Card		
360 - 363	PC Network (Low Address)		
364 - 367	Reserved		
368 - 36B	PC Network (High Address)		
36C - 36F	Reserved		
378 - 37F	Parallel Printer Port 1		
380 - 38F	SDLC, Bisynchronous 2		
390 - 393	Cluster		
3A0 - 3AF	Bisynchronous 1		
3B0 - 3BF	Monochrome Display and Printer Adapter		
3C0 - 3CF	Enhanced Graphics Adapter		
3D0 - 3DF	Color/Graphics Monitor Adapter		

I/O ADDRESS (HEX)	I/O DEVICE			
3F0 - 3F7	Diskette Drive Controller			
3F8 - 3FF	Serial Port 1 (RS-232-C)			
6E2 - 6E3	Data Acquisition Adapter 1			
790 - 793	Cluster Adapter 1			
AE2 - AE3	Data Acquisition Adapter 2			
B90 - B93	Cluster Adapter 2			
EE2 - EE3	Data Acquisition Adapter 3			
1390 - 1393	Cluster Adapter 3			
22E1	GPIB Adapter 1			
2390 - 2393	Cluster Adapter 4			
42E1	GPIB Adapter 2			
62E1	GPIB Adapter 3			
82E1	GPIB Adapter 4			
A2E1	GPIB Adapter 5			
C2E1	GPIB Adapter 6			
E2E1	GPIB Adapter 7			

APPENDIX D: MEMORY MAPPING

Address	Function	Comments	
(hex)			
00000000- 0007FFFF	512K System RAM	Cached	
00080000- 0009FFFF	128K System RAM	Cached	
000A0000- 000BFFFF	128K Video RAM	Not Cached	
000C0000- 000C7FFF	32K Video BIOS	Not Cached	
000C8000- 000CFFFF	32K I/O ROM Not Cached		
000D0000- 000DFFFF	64K I/O ROM	Not Cached	
000E0000- 000EFFFF	64K Extended BIOS	Not Cached	
000F0000- 000FFFFF	64K On-Board BIOS ROM	Cached	
00100000- 00BFFFFF	System Memory (RAM)	Cached	
00C00000- 00FFFFFF	System Memory (RAM)	Cached	
01000000- BFFFFFFF	System Memory (RAM)	Cached	
C0000000- C1FFFFFF	System Memory (RAM)	Cached	
C2000000- FFFDFFFF	System Memory	Cached	
FFFE0000- FFFFFFFF	128K On-Board BIOS ROM	Not cached	

APPENDIX E: INTERRUPT LEVEL ASSIGNMENTS

LEVEL	TYPICAL INTERRUPT SOURCE		
ON SVSTEM			
NMI	Parity, AT Channel Check,		
	Bus Time Out, Fail Safe Timer Timeout		
IRQ0	Interval Timer 1, Counter 0 Out		
IRQ1	Keyboard Controller		
IRQ2	Cascade Interrupts from IRQ8 to IRQ15		
IRQ3	Serial Port 2		
IRQ4	Serial Port 1		
IRQ5	Parallel Port 2		
IRQ6	Diskette Controller		
IRQ7	Parallel Port 1		
IRQ8	Real Time Clock		
IRQ9	Expansion Bus Pin		
IRQ10	Expansion Bus Pin		
IRQ11	Expansion Bus Pin		
IRQ12	Expansion Bus Pin		
IRQ13	Coprocessor Error, DMA Chaining		
IRQ14	Fixed Disk Drive Controller		
	Expansion Bus Pin		
IRQ15	Expansion Bus Pin		

PRODUCT INFORMATION RECORD

Record all the above information as you received the product and provide to your supplier in writing to obtain technical support assistance. This will help to speed up the response and get your problem solved.

System Board

Date Purchased or Received:						
Purchased From:						
Product Name:		_PCB Ver:	Rev:			
Serial Number:						
CPU Processor Speed:Memory Size:						
BIOS Version: Software Driver Rel #:						
PCI Add-on Cards:						
Model #	Interrup	ot:	Slot #:			
Model #	Interrupt:		Slot #:			
Model #	Interrupt:		Slot #:			
VESA / ISA Add-on Cards:						
Model #	Interrupt:	DMA:	Slot #:			
Model #	Interrupt:	DMA:	Slot #:			
Model #	Interrupt:	DMA:	Slot #:			
Model #	Interrupt:	DMA:	Slot #:			