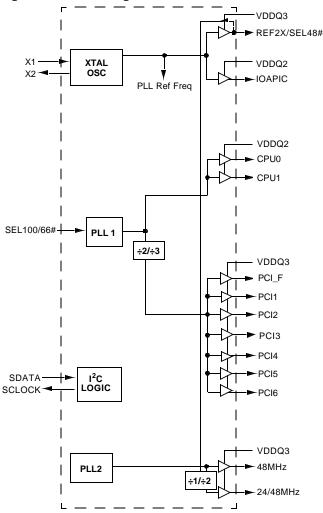


100MHz Spread Spectrum Motherboard Frequency Generator

Features

- Maximized EMI suppression using IC WORKS' Spread Spectrum Technology
- Reduces measured EMI by as much as 10dB
- I²C programmable
- Two skew-controlled copies of CPU output
- Seven copies of PCI output (synchronous w/CPU output)
- One copy of 14.31818 MHz IOAPIC output
- One copy of 48MHz USB output
- Selectable 24/48MHz output is determined by resistor straps on power up
- One high drive output buffer that produces a copy of the 14.318MHz reference
- Programmable to 133, 124, 112, 103, 100 MHz and below


• For 3 DIMM designs, see also the W40S11-23 buffer chip, for 4 DIMM designs see the W40S12-24 or W40S01-04

Key Specifications

Supply Voltages:

	VDDQ3 = 3.3V±5%
	$VDDQ2 = 2.5V \pm 5\%$
CPU Cycle to Cycle Jitter:	200ps
CPU, PCI Edge Rate:	≥1V/ns
CPU0:1 Skew:	175ps
PCI_F, PCI1:6 Skew:	500ps
CPU to PCI Skew:	1.5 - 4.0ns (CPU Leads)
Logic inputs and REF2X/SEL48# h resistors, except SEL100/66#	nave 250Kohm pull-up

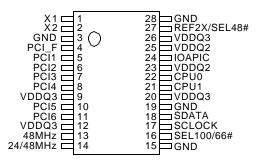

Figure 1 Block Diagram

Table 1 Pin Selectable Frequency

SEL100/66#	CPU(0:1)	PCI
1	100MHz	33.3MHz
0	66.8MHz	33.4MHz

Figure 2 Pin Diagram

Table 2 Order Information

Part Number	Package
W124	G = SOIC (300 mils)

Pin Definitions

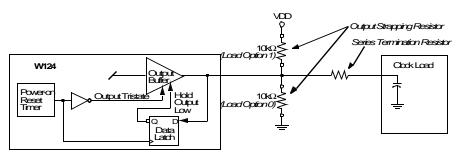
Pin Name	Pin No.	Pin Type	Pin Description		
CPU0:1	22, 21	0	CPU Clock Outputs 0 through 1: These two CPU clocks run at a frequency set by SEL100/66#. Output voltage swing is set by the voltage applied to VDDQ2.		
PCI1:6 PCI_F	5, 6, 7, 8, 10, 11, 4	0	PCI Clock Outputs 1 through 6 and PCI_F: These seven PCI clock outputs run synchronously to the CPU clock. Voltage swing is set by the power connection to VDDQ3.		
IOAPIC	24	0	<i>I/O APIC Clock Output:</i> Provides 14.318MHz fixed frequency. The output voltage swing is set by the power connection to VDDQ2.		
48MHz	13	0	48MHz Output: Fixed 48MHz USB clock. Output voltage swing is controlled by voltage applied to VDDQ3.		
24/48MHz	14	0	24MHz or 48MHz Output: Frequency is set by the state of pin 27 on power up.		
REF2X/ SEL48#	27	I/O	<i>I/O Dual Function REF2X and SEL48# pin:</i> Upon power-up, the state of SEL4 is latched. The initial state is set by either a 10K resistor to GND or to VDD. A 10 resistor to GND causes pin 14 to output 48MHz. If the pin is strapped to VDD, p 14 will output 24MHz. After 2ms, the pin becomes a high drive output that produces a copy of 14.318MHz.		
SEL100/66#	16	I	<i>Frequency Selection Input:</i> Selects CPU clock frequency as shown in Table1 on page1.		
SDATA	18	I/O	I^2C Data Pin: Data should be presented to this input as described in the I^2C section of this data sheet. Internal 250K ohm pull-up resistor.		
SCLOCK	17	I	I^2C clock Pin: The I^2C Data clock should be presented to this input as described in the I^2C section of this data sheet.		
X1	1	I	<i>Crystal Connection or External Reference Frequency Input:</i> Connect to either a 14.318MHz crystal or other reference signal.		
X2	2	I	<i>Crystal Connection:</i> An input connection for an external 14.318MHz crystal. If using an external reference, this pin must be left unconnected.		
VDDQ3	9,12,20,26	Р	Power Connection: Power supply for PCI output buffers, 48MHz USB output buffers, Reference output buffer, core logic and PLL circuitry. Connect to 3.3V supply.		
VDDQ2	23, 25	Р	Power Connection: Power supply for IOAPIC and CPU output buffers. Connect to 2.5V supply.		
GND	3, 15, 19, 28	G	<i>Ground Connections:</i> Connect all ground pins to the common system ground plane.		

The W124 a motherboard clock synthesizer, can provide either a 2.5V or 3.3V CPU clock swing making it suitable for a variety of CPU options. A fixed 48MHz clock is provided for other system functions. The device W124 supports spread spectrum clocking for reduced EMI.

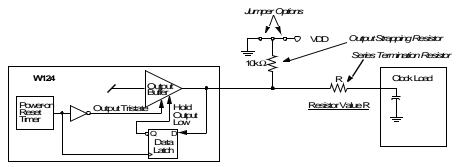
Functional Description

I/O Pin Operation

Pin 27 is a dual purpose I/O pin. Upon power up this pin acts as a logic input, allowing the determination of assigned device functions. A short time after power up, the logic state of the pin is latched and the pin becomes a clock output. This feature reduces device pin count by combining clock outputs with input select pins.


An external 10 kohm "strapping" resistor is connected between the I/O pin and ground or VDD. Connection to ground sets a latch to "0", connection to VDD sets a latch to "1'. Figure 3 and Figure 4 show two suggested methods for strapping resistor connections.

Upon W124 power up, the first 2ms of operation is used for input logic selection. During this period, the Reference clock output buffer is tristated, allowing the output strapping resistor on the I/O pin to pull the pin and its associated capacitive clock load to either a logic high or low state. At the end of the 2ms period, the established logic "0" or "1" condition of the I/ O pin is then latched. Next the output buffer is enabled which converts the I/O pin into an operating clock output. The 2ms timer is started when VDD reaches 2.0V. The input bit can only be re-set by turning VDD off and then back on again.

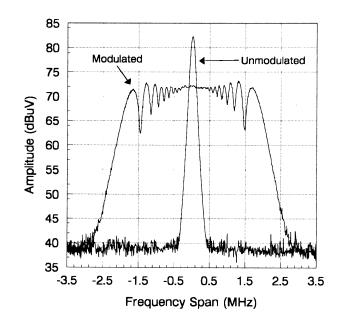

It should be noted that the strapping resistor has no significant effect on clock output signal integrity. The drive impedance of clock output is 25 ohms (nominal) which is minimally affected by the 10 kohm strap to ground or VDD. As with the series termination resistor, the output strapping resistor should be placed as close to the I/O pin as possible in order to keep the interconnecting trace short. The trace from the resistor to ground or VDD should be kept less than two inches in length to prevent system noise coupling during input logic sampling.

When the clock output is enabled following the 2ms input period, a 14.318MHz output frequency is delivered on the pin, assuming that VDD has stabilized. If VDD has not yet reached full value, output frequency initially may be below target but will increase to target once VDD voltage has stabilized. In either case, a short output clock cycle may be produced from the CPU clock outputs when the outputs are enabled.

Figure 3 Input Logic Selection Through Resistor Load Option

Figure 4 Input Logic Selection Through Jumper Option

Spread Spectrum Clocking


The device generates a clock that is frequency modulated in order to increase the bandwidth that it occupies. By increasing the bandwidth of the fundamental and its harmonics, the amplitudes of the radiated electromagnetic emissions are reduced. This effect is depicted in Figure 5.

As shown in Figure 5, a harmonic of a modulated clock has a much lower amplitude than that of an unmodulated signal. The reduction in amplitude is dependent on the harmonic number and the frequency deviation or spread. The equation for the reduction is

 $dB = 6.5 + 9*log_{10}(P) + 9*log_{10}(F)$

Where P is the percentage of deviation and F is the frequency in MHz where the reduction is measured.

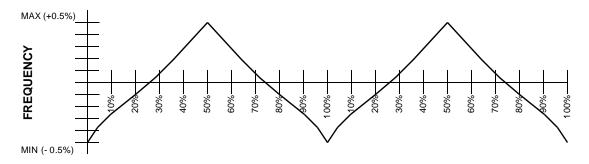

The output clock is modulated with a waveform depicted in Figure 6. This waveform, as discussed in "Spread Spectrum Clock Generation for the Reduction of Radiated Emissions" by Bush, Fessler, and Hardin produces the maximum reduction in the amplitude of radiated electromagnetic emissions. The deviation selected for this chip is $\pm 0.5\%$ of the center frequency. Figure 6 details the IC WORKS spreading pattern. IC WORKS does offer options with more spread and greater EMI reduction. Contact your local Sales representative for details on these devices.

Figure 5 Clock Harmonic with and without SSCG Modulation Frequency Domain Representation

Spread Spectrum clocking is activated or deactivated by selecting the appropriate values for bits 1-0 in data byte 0 of the I²C data stream. Refer to Table 7 for more details.

Serial Data Interface

The W124 features a two-pin, serial data interface that can be used to configure internal register settings that control particular device functions. Upon power-up, the W124 initializes with default register settings. Therefore, the use of this serial data interface is optional. The serial interface is write-only (to the clock chip) and is the dedicated function of device pins SDATA and SCLOCK. In motherboard applications, SDATA and SCLOCK are typically driven by two logic outputs of the chipset. Clock device register changes are normally made upon system initialization, if required. The interface can also be used during system operation for power management functions. Table 3 summarizes the control functions of the serial data interface.

Control Function	Description	Common Application			
Clock Output Disable	Any individual clock output(s) can be disabled. Disabled outputs are actively held low.	Unused outputs are disabled to reduce EMI and system power. Examples are clock outputs to unused PCI slots.			
CPU Clock Frequency Selection	Provides CPU/PCI frequency selections beyond the 100 and 66.66MHz selections that are provided by the SEL100/66# pin. Frequency is changed in a smooth and controlled fashion.	For alternate microprocessors and power man- agement options. Smooth frequency transition allows CPU frequency change under normal sys- tem operation.			
Output Tristate	Puts all clock outputs into a high impedance state.	Production PCB testing.			
Test Mode	All clock outputs toggle in relation to X1 input, internal Production PCB testing. PLL is bypassed. Refer to Table 5.				
(Reserved)	Reserved function for future device revision or produc- tion device testing.	No user application. Register bit must be written as 0.			

 Table 3
 Serial Data Interface Control Functions Summary

Operation

Г

Data is written to the W124 in ten bytes of eight bits each. Bytes are written in the order shown in Table 4.

 Table 4
 Byte Writing Sequence

Byte Sequence	Byte Name	Bit Sequence	Byte Description
1	Slave Address	11010010	Commands the W124 to accept the bits in Data Bytes 3-6 for internal register configuration. Since other devices may exist on the same common serial data bus, it is necessary to have a specific slave address for each potential receiver. The slave receiver address for the W124 is 11010010. Register setting will not be made if the Slave Address is not correct (or is for an alternate slave receiver).
2	Command Code	Don't Care	Unused by the W124, therefore bit values are ignored (don't care). This byte must be included in the data write sequence to maintain proper byte allocation. The Command Code Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
3	Byte Count	Don't Care	Unused by the W124, therefore bit values are ignored (don't care). This byte must be included in the data write sequence to maintain proper byte allocation. The Byte Count Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
4	Data Byte 0	Don't Care	Refer to IC WORKS SDRAM drivers (W40S11-23, W40S12-24, W40S01-04H).
5	Data Byte 1		W40301-04H).
6	Data Byte 2		
7	Data Byte 3	Refer to Table 5	The data bits in these bytes set internal W124 registers that control device
8	Data Byte 4		operation. The data bits are only accepted when the Address Byte bit sequence is 11010010, as noted above. For description of bit control func-
9	Data Byte 5		tions, refer to Table 5, Data Byte Serial Configuration Map.
10	Data Byte 6		

Writing Data Bytes

Each bit in the data bytes control a particular device function except for the "reserved" bits which must be written as a logic 0. Bits are written MSB (most significant bit) first, which is bit 7. Table 5 gives the bit formats for registers located in Data Bytes 3-6. Table 6 details additional frequency selections that are available through the serial data interface.

Table 7 details the select functions for Byte 3, bits 1 and 0.

	Affe	cted Pin		Bit Control		
Bit(s)	Pin No.	Pin Name	Control Function	0	1	Default
Data Byte	3					
7			(Reserved)			0
6			SEL_2	Refer to	Table 6	0
5			SEL_1	Refer to	Table 6	0
4			SEL_0	Refer to	Table 6	0
3			BYT3 or SEL Pin	Frequency Controlled by external SEL100/ 66# pin	Frequency Controlled by BYT3 SEL (2:0)	0
2			(Reserved)			0
1-0			Bit 1 Bit 0 Fund 0 0 Norr 0 1 Test 1 0 Spred 1 1 All C	00		
Data Byte	4		·			
7			(Reserved)			0
6	14	24/48MHz	Clock output disable	Low	Active	1
5			(Reserved)			0
4			(Reserved)			0
3			(Reserved)			0
2	21	CPU1	Clock Output Disable	Low	Active	1
1			(Reserved)			0
0	22	CPU0	Clock Output Disable	Low	Active	1
Data Byte	5		·			
7	4	PCI_F	Clock Output Disable	Low	Active	1
6	11	PCI6	PCI6 Clock Output Disable Low Active		Active	1
5	10	PCI5	Clock Output Disable	Low	Active	1
4	-		(Reserved)			0
3	8	PCI4	Clock Output Disable	Low	Active	1
2	7	PCI3	Clock Output Disable	Low Active		1
1	6	PCI2	Clock Output Disable	Low	Active	1
0	5	PCI1	Clock Output Disable	Low	Active	1
Data Byte	6	•			· · · · · · · · · · · · · · · · · · ·	
7			(Reserved)			0
6			(Reserved)			0
5	24	IOAPIC	Clock Output Disable	Low	Active	1
4			(Reserved)			0
3			(Reserved)			0
2			(Reserved)			0
1	27	REF2X	Clock Output Disable	Low	Active	1 (Note 2)
0	27	REF2X	Clock Output Disable	Low	Active	1 (Note 2)

Table 5 Data Bytes 3-6 Serial Configuration Map

Table 6	Additional Frequency Selections through Serial Data Interface Data Bytes
	raditional i requeriey eclectione tineagn contai bata internace bata bytee

	Input Conditions			Output Frequency		
	Data Byte 3, Bit 3 = 1					
Bit 6 SEL_2	Bit 5 SEL_1	Bit 4 SEL_0	CPU, SDRAM Clocks (MHz)	PCI Clocks (MHz)	Spread Percentage	
0	0	0	124	41.3	±0.5% Center	
0	0	1	75	37.5	±0.5% Center	
0	1	0	83.3	41.6	±0.5% Center	
0	1	1	66.8	33.4	±0.5% Center	
1	0	0	103	34.25	±0.5% Center	
1	0	1	112	37.3	±0.5% Center	
1	1	0	133.3	44.43	±0.5% Center	
1	1	1	100	33.3	±0.5% Center	

Table 7 Select Function for Data Byte 3, Bits 0:1

	Input Co	onditions	Output Conditions					
	Data Byte 3 Bit 1 Bit 0							
Function				PCI_F, PCI1:6	REF2X, IOAPIC	48MHZ	24MHZ	
Normal Operation	0	0	Note 1	Note 1	14.318MHz	48MHz	24MHz	
Spread Spectrum Mode	1	0	±0.5%	±0.5%	14.318MHz	48MHz	24MHz	
Test Mode	0	1	X1/2	CPU/2 or 3	X1	X1/2	X1/4	
Tristate	1	1	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	

Notes: 1. CPU and PCI frequency selections are listed in Table 1 and Table 6.

2. Both Bits 0 &1 of Byte 6 in Table 5 <u>MUST</u> be set to the same value.

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Symbol	Parameter	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
Т _В	Ambient Temperature under Bias	-55 to +125	°C
T _A	Operating Temperature	0 to +70	°C
ESD _{PROT}	Input ESD Protection	2 (min)	kV

DC Electrical Characteristics:

 $T_A = 0^{\circ}C$ to +70°C; VDDQ3 = 3.3V±5%; VDDQ2 = 2.5V±5%

Symbol	Parameter		Min	Тур	Max	Unit	Test Condition
Supply Cur	rent						
I _{DDQ3}	Combined 3.3V Supply C	urrent		85		mA	CPU0:1 = 100MHz Outputs Loaded (Note 1)
I _{DDQ2}	Combined 2.5V Supply C	urrent		30		mA	CPU0:1 = 100MHz Outputs Loaded (Note 1)
Logic Input	ts						
V _{IL}	Input Low Voltage		GND3		0.8	V	
V _{IH}	Input High Voltage		2.0		VDD +.3	V	
I _{IL}	Input Low Current (Note 2			-25	μA		
I _{IH}	Input High Current (Note			10	μA		
I _{IL}	Input Low Current (SEL1			-5	μA		
I _{IH}	Input High Current (SEL1			+5	μA		
Clock Outp	uts						
V _{OL}	Output Low Voltage				50	mV	I _{OL} = 1mA
V _{ОН}	Output High Voltage		3.1			V	I _{OH} = -1mA
V _{OH}	Output High Voltage	CPU0:1/IOAPIC	2.2			V	I _{OH} = -1mA
I _{OL}	Output Low Current:	CPU0:1	38	57	97	mA	V _{OL} = 1.25V
		PCI_F, PCI1:6	74	96	200	mA	V _{OL} = 1.5V
		IOAPIC	55	85	165	mA	V _{OL} = 1.25V
		REF2X	50	74	152	mA	V _{OL} = 1.5V
		48MHz, 24MHz	50	60	120	mA	V _{OL} = 1.5V

DC Electrical Characteristics: (cont.)

 $T_A = 0^{\circ}C$ to +70°C; VDDQ3 = 3.3V±5%; VDDQ2 = 2.5V±5%

Symbol	Parameter		Min	Тур	Мах	Unit	Test Condition
I _{ОН}	Output High Current	CPU0:1	38	55	97	mA	V _{OH} = 1.25V
		PCI_F, PCI1:6	74	96	200	mA	V _{OH} = 1.5V
		IOAPIC	55	85	165	mA	V _{OH} = 1.25V
		REF2X	50	74	152	mA	V _{OH} = 1.5V
		48MHz, 24MHz	50	60	120	mA	V _{OH} = 1.5V
Crystal Os	cillator	• • • • • • • • • • • • • • • • • • •			·		
V _{TH}	X1 Input threshold Voltag		1.65		V	VDDQ3 = 3.3V	
C _{LOAD}	Load Capacitance, As se External Crystal (Note 4)		14		pF		
C _{IN,X1}	X1 Input Capacitance (N	ote 5)		28		pF	Pin X2 unconnected
Pin Capaci	tance/Inductance				·		
C _{IN}	Input Pin Capacitance			5	pF	Except X1 and X2	
C _{OUT}	Output Pin Capacitance			6	pF		
L _{IN}	Input Pin Inductance				7	nH	

Notes: 1. All clock outputs loaded with 6" 60 Ω transmission line, with 20pF capacitors .

2. W124 logic inputs have internal pull-up resistors, except SEL100/66# (pull-ups not CMOS level).

3. X1 input threshold voltage (typical) is VDDQ3/2.

4. The W124 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is 14pF; this includes typical stray capacitance of short PCB traces to crystal.

5. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).

AC Electrical Characteristics:

$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C; \text{ VDDQ3} = 3.3V \pm 5\%; \text{ VDDQ2} = 2.5V \pm 5\%; \text{ } f_{XTL} = 14.31818 \text{MHz}$

AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the clock output; Spread Spectrum clocking is disabled.

		CPL	J = 66.8	MHz	CPL	CPU = 100MHz			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit	Test Condition/Comments
t _P	Period	15		15.5	10		10.5	ns	Measured on rising edge at 1.25.
t _H	High Time	5.2			3.0			ns	Duration of clock cycle above 2.0V.
tL	Low Time	5.0			2.8			ns	Duration of clock cycle below 0.4V.
t _R	Output Rise Edge Rate	1		4	1		4	V/ns	Measured from 0.4V to 2.0V.
t _F	Output Fall Edge Rate	1		4	1		4	V/ns	Measured from 2.0V to 0.4V.
t _D	Duty Cycle	45		55	45		55	%	Measured on rising and falling edge at 1.25V.
t _{JC}	Jitter, Cycle-to-Cycle			200			200	ps	Measured on rising edge at 1.25V. Maximum difference of cycle time between two adjacent cycles.
t _{SK}	Output Skew			175			175	ps	Measured on rising edge at 1.25V.
f _{ST}	Frequency Stabilization from Power-up (cold start)			3			3	ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.
Zo	AC Output Impedance		20			20		ohm	Average value during switching transition. Used for determining series termination value.

CPU Clock Outputs, CPU0:1 (Lump Capacitance Test Load = 20pF)

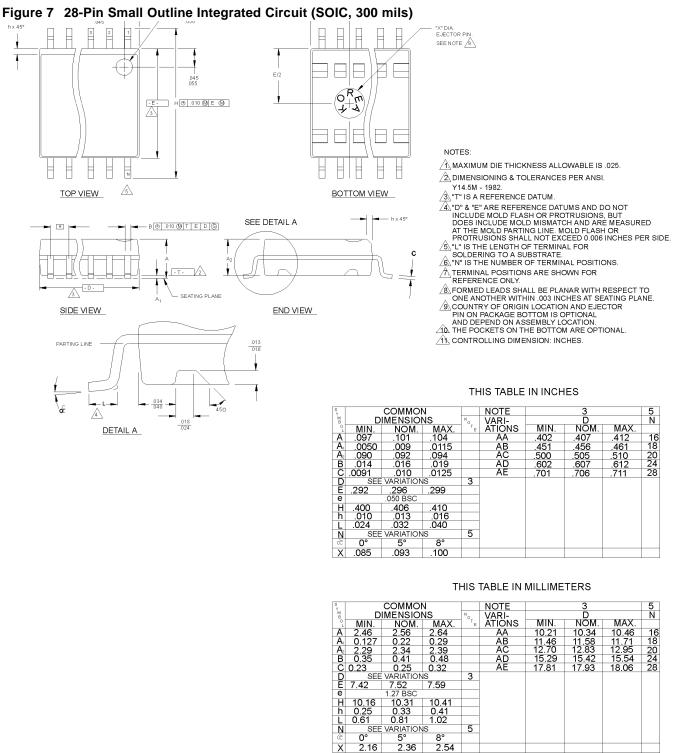
PCI Clock Outputs, PCI1:6 and PCI_F(Lump Capacitance Test Load = 30pF)

						· ·
		CPU = 66.8/100MHz				
Symbol	Parameter	Min	Тур	Max	Unit	Test Condition/Comments
t _P	Period	30			ns	Measured on rising edge at 1.5V.
t _H	High Time	12.0			ns	Duration of clock cycle above 2.4V.
tL	Low Time	12.0			ns	Duration of clock cycle below 0.4V.
t _R	Output Rise Edge Rate	1		4	V/ns	Measured from 0.4V to 2.4V.
t _F	Output Fall Edge Rate	1		4	V/ns	Measured from 2.4V to 0.4V.
t _D	Duty Cycle	45		55	%	Measured on rising and falling edge at 1.5V.
t _{JC}	Jitter, Cycle-to-Cycle			250	ps	Measured on rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.
t _{SK}	Output Skew			500	ps	Measured on rising edge at 1.5V.
t _O	CPU to PCI Clock Offset	1.5		4.0	ns	Covers all CPU/PCI outputs. Measured on rising edge at 1.5V. CPU leads PCI output.
f _{ST}	Frequency Stabilization from Power-up (cold start)			3	ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.
Zo	AC Output Impedance		15		ohm	Average value during switching transition. Used for determining series termination value.

IOAPIC Clock Output (Lump Capacitance Test Load = 20pF)

		CPU = 66.8/100MHz				
Symbol	Parameter	Min	Тур	Max	Unit	Test Condition/Comments
f	Frequency, Actual		14.31818		MHz	Frequency generated by crystal oscillator.
t _R	Output Rise Edge Rate	1		4	V/ns	Measured from 0.4V to 2.0V.
t _F	Output Fall Edge Rate	1		4	V/ns	Measured from 2.0V to 0.4V.
t _D	Duty Cycle	45		55	%	Measured on rising and falling edge at 1.25V.
t _A	Jitter, Absolute			500	ps	Measured on rising edge at 1.25V. Maximum deviation of clock period.
f _{ST}	Frequency Stabilization from Power-up (cold start)			3	ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.
Zo	AC Output Impedance		15		ohm	Average value during switching transition. Used for determining series termination value.

REF2X Clock Output (Lump Capacitance Test Load = 20pF)


		CPU =66.8/100MHz				
Symbol	Parameter	Min	Тур	Мах	Unit	Test Condition/Comments
f	Frequency, Actual		14.318		MHz	Frequency generated by crystal oscillator.
t _R	Output Rise Edge Rate	0.5		2	V/ns	Measured from 0.4V to 2.4V.
t _F	Output Fall Edge Rate	0.5		2	V/ns	Measured from 2.4V to 0.4V.
t _D	Duty Cycle	45		55	%	Measured on rising and falling edge at 1.5V.
f _{ST}	Frequency Stabilization from Power-up (cold start)			3	ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to fre- quency stabilization.
Zo	AC Output Impedance		20		ohm	Average value during switching transition. Used for determining series termination value.

48MHz and 24MHz Clock Output (Lump Capacitance Test Load = 20pF)

		CPU = 66.8/100MHz				
Symbol	Parameter	Min	Тур	Max	Unit	Test Condition/Comments
f	Frequency, Actual		48.008 24.004		MHz	Determined by PLL divider ratio (see m/nbelow).
f _D	Deviation from 48MHz		+167		ppm	(48.008 - 48)/48
m/n	PLL Ratio	57/17, 57/34			(14.31818MHz x 57/17 = 48.008MHz)	
t _R	Output Rise Edge Rate	0.5		2	V/ns	Measured from 0.4V to 2.4V.
t _F	Output Fall Edge Rate	0.5		2	V/ns	Measured from 2.4V to 0.4V.
t _D	Duty Cycle	45		55	%	Measured on rising and falling edge at 1.5V.
f _{ST}	Frequency Stabilization from Power-up (cold start)			3	ms	Assumes full supply voltage reached within 1ms from power-up. Short cycles exist prior to frequency stabilization.
Zo	AC Output Impedance		25		ohm	Average value during switching transition. Used for determining series termination value.

Mechanical Package Outline

IC WORKS, Inc. reserves the right to amend or discontinue this product without notice. Circuit and timing diagrams used the describe IC WORKS product operations and applications are included as a means of illustrating a typical product application. Complete information for design purposes is not necessarily given. This information has been carefully checked and is believed to be entirely reliable. IC WORKS, however, will not assume any responsibility for inaccuracies.

Life Support Applications:

IC WORKS products are not designed for use in life support applications, devices, or systems where malfunctions of the IC WORKS product can reasonably be expected to result in personal injury. IC WORKS customers using or selling IC WORKS products for use in such applications do so at their own risk and agree to fully indemnify IC WORKS for any damages resulting in such improper use or sale.