Intel® E7230 Chipset Memory Controller Hub (MCH)

Datasheet

July 2005

Reference Number: 308333-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FINESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® E7230 MCH may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, Pentium, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright© 2005, Intel Corporation

int_el_® Contents

1	Introd	luction		15
	1.1	Termin	ology	16
	1.2	Refere	nce Documents	17
	1.3	MCH C	Dverview	18
		1.3.1	Host Interface	18
		1.3.2	System Memory Interface	18
		1.3.3	Direct Media Interface (DMI)	19
		1.3.4	Intel® 6700PXH 64-bit PCI Hub/Intel® 6702PXH 64-bit PCI	
			Hub Interface (PCI Express* x8 Equivalent)	20
		1.3.5	System Interrupts	20
		1.3.6	MCH Clocking	21
		1.3.7	Power Management	21
2	Signa	l Descrip	tion	23
	2.1	Host In	terface Signals	25
	2.2		DRAM Channel A Interface	
	2.3		DRAM Channel B Interface	
	2.4	DDR2	DRAM Reference and Compensation	29
	2.5		press Interface Signals	
	2.6		, Reset, and Miscellaneous	
	2.7	Direct I	Media Interface (DMI)	31
	2.8	Power,	Ground	31
	2.9	Reset S	States and Pull-up/Pull-downs	31
3	MCH	Register	Description	
	3.1	-	er Terminology	
	3.2	•	m Configuration	
	3.3		uration Mechanism	
		3.3.1	Standard PCI Configuration Mechanism	
		3.3.2	PCI Express Enhanced Configuration Mechanism	
	3.4	Routing	g Configuration Accesses	
		3.4.1	Internal Device Configuration Accesses	42
		3.4.2	Bridge Related Configuration Accesses	42
	3.5	I/O Ma	pped Registers	
		3.5.1	CONFIG_ADDRESS—Configuration Address Register	
		3.5.2	CONFIG_DATA—Configuration Data Register	

Host B	ridge Re	gisters (Device 0, Function 0)	. 47
4.1	Configu	ation Register Details (D0:F0)	. 49
	4.1.1	VID—Vendor Identification (D0:F0)	. 49
	4.1.2	DID—Device Identification (D0:F0)	. 49
	4.1.3	PCICMD—PCI Command (D0:F0)	. 49
	4.1.4	PCISTS—PCI Status (D0:F0)	50
	4.1.5	RID—Revision Identification (D0:F0)	
	4.1.6	CC-Class Code (D0:F0)	. 52
	4.1.7	MLT—Master Latency Timer (D0:F0)	. 53
	4.1.8	HDR—Header Type (D0:F0)	. 53
	4.1.9	SVID—Subsystem Vendor Identification (D0:F0)	. 53
	4.1.10	SID—Subsystem Identification (D0:F0)	. 54
	4.1.11	CAPPTR—Capabilities Pointer (D0:F0)	. 54
	4.1.12	EPBAR—Egress Port Base Address (D0:F0)	. 54
	4.1.13	MCHBAR-MCH Memory Mapped Register Range Base Address (D0:F0)	. 55
	4.1.14	PCIEXBAR—PCI Express Register Range Base Address (D0:F0)	. 56
	4.1.15	DMIBAR—Root Complex Register Range Base Address (D0:F0)	. 57
	4.1.16	DEVEN—Device Enable (D0:F0)	. 58
	4.1.17	DEAP - DRAM Error Address Pointer (D0:F0)	. 58
	4.1.18	DERRSYN - DRAM Error Syndrome (D0:F0)	. 59
	4.1.19	DERRDST - DRAM Error Destination (D0:F0)	. 59
	4.1.20	PAM0—Programmable Attribute Map 0 (D0:F0)	. 60
	4.1.21	PAM1—Programmable Attribute Map 1 (D0:F0)	. 61
	4.1.22	PAM2—Programmable Attribute Map 2 (D0:F0)	. 61
	4.1.23	PAM3—Programmable Attribute Map 3 (D0:F0)	. 62
	4.1.24	PAM4—Programmable Attribute Map 4 (D0:F0)	. 63
	4.1.25	PAM5—Programmable Attribute Map 5 (D0:F0)	. 63
	4.1.26	PAM6—Programmable Attribute Map 6 (D0:F0)	. 64
	4.1.27	LAC-Legacy Access Control (D0:F0)	
	4.1.28	REMAPBASE - Remap Base Address Register	. 66
	4.1.29	REMAPLIMIT - Remap Limit Address Register	. 66
	4.1.30	TOLUD—Top of Low Usable DRAM (D0:F0)	. 67
	4.1.31	SMRAM—System Management RAM Control (D0:F0)	. 67
	4.1.32	ESMRAMC—Extended System Management RAM Control (D0:F0)	. 68
	4.1.33	TOM - Top of Memory	. 69
	4.1.34	ERRSTS—Error Status (D0:F0)	. 70
	4.1.35	ERRCMD—Error Command (D0:F0)	
	4.1.36	SMICMD - SMI Command (D0:F0)	
	4.1.37	SCICMD - SCI Command (D0:F0)	
	4.1.38	SKPD—Scratchpad Data (D0:F0)	
	4.1.39	CAPID0—Capability Identifier (D0:F0)	
	4.1.40	EDEAP—Extended DRAM Error Address Pointer (D0:F0)	
4.2	MCHBA	R Configuration Register Details	
	4.2.1	C0DRB0—Channel A DRAM Rank Boundary Address 0	
	4.2.2	C0DRB1—Channel A DRAM Rank Boundary Address 1	
	4.2.3	C0DRB2—Channel A DRAM Rank Boundary Address 2	
	4.2.4	C0DRB3—Channel A DRAM Rank Boundary Address 3	
	4.2.5	C0DRA0—Channel A DRAM Rank 0,1 Attribute	
	4.2.6	C0DRA2—Channel A DRAM Rank 2,3 Attribute	
	4.2.7	CODCLKDIS—Channel A DRAM Clock Disable	
	4.2.8	C0BNKARC—Channel A DRAM Bank Architecture	. 79

4

	4.2.9	C0DRT1—Channel A DRAM Timing Register	79
	4.2.10	C0DRC0—Channel A DRAM Controller Mode 0	80
	4.2.11	C0DRC1—Channel A DRAM Controller Mode 1	82
	4.2.12	C1DRB0—Channel B DRAM Rank Boundary Address 0	82
	4.2.13	C1DRB1—Channel B DRAM Rank Boundary Address 1	82
	4.2.14	C1DRB2—Channel B DRAM Rank Boundary Address 2	83
	4.2.15	C1DRB3—Channel B DRAM Rank Boundary Address 3	83
	4.2.16	C1DRA0—Channel B DRAM Rank 0,1 Attribute	83
	4.2.17	C1DRA2—Channel B DRAM Rank 2,3 Attribute	83
	4.2.18	C1DCLKDIS—Channel B DRAM Clock Disable	
	4.2.19	C1BNKARC—Channel B Bank Architecture	
	4.2.20	C1DRT1—Channel 1 DRAM Timing Register 1	
	4.2.21	C1DRC0—Channel 1 DRAM Controller Mode 0	
	4.2.22	C1DRC1—Channel 1 DRAM Controller Mode 1	
	4.2.23	PMCFG—Power Management Configuration	
	4.2.24	PMSTS—Power Management Status	
4.3	Egress	Port Register Summary	
	4.3.1	EPESD—EP Element Self Description	
	4.3.2	EPLE1D—EP Link Entry 1 Description	
	4.3.3	EPLE1A—EP Link Entry 1 Address	
	4.3.4	EPLE2D—EP Link Entry 2 Description	
	4.3.5	EPLE2A—EP Link Entry 2 Address	89
Host-I		ess Bridge Registers (D1:F0)	91
5.1		ration Register Details (D1:F0)	
	5.1.1	VID1—Vendor Identification (D1:F0)	
	5.1.2	DID1—Device Identification (D1:F0)	
	5.1.3	PCICMD1—PCI Command (D1:F0)	
	5.1.4	PCISTS1—PCI Status (D1:F0)	96
	5.1.5	RID1—Revision Identification (D1:F0)	97
	5.1.6	CC1—Class Code (D1:F0)	98
	5.1.7	CL1—Cache Line Size (D1:F0)	98
	5.1.8	HDR1—Header Type (D1:F0)	99
	5.1.9	PBUSN1—Primary Bus Number (D1:F0)	99
	5.1.10	SBUSN1—Secondary Bus Number (D1:F0)	99
	5.1.11	SUBUSN1—Subordinate Bus Number (D1:F0)	100
	5.1.12	IOBASE1—I/O Base Address (D1:F0)	100
	5.1.13	IOLIMIT1—I/O Limit Address (D1:F0)	101
	5.1.14	SSTS1—Secondary Status (D1:F0)	
	5.1.15	MBASE1—Memory Base Address (D1:F0)	
	5.1.16	MLIMIT1—Memory Limit Address (D1:F0)	
	5.1.17	PMBASE1—Prefetchable Memory Base Address (D1:F0)	
	5.1.18	PMLIMIT1—Prefetchable Memory Limit Address (D1:F0)	
	5.1.19	PMBASEU1—Prefetchable Memory Base Address	
	5.1.20	PMLIMITU1—Prefetchable Memory Limit Address	
	5.1.21	CAPPTR1—Capabilities Pointer (D1:F0)	
	5.1.22	INTRLINE1—Interrupt Line (D1:F0)	
	5.1.23	INTRPIN1—Interrupt Pin (D1:F0)	
	5.1.24	BCTRL1—Bridge Control (D1:F0)	
	5.1.25	PM_CAPID1—Power Management Capabilities (D1:F0)	
	5.1.26	PM_CS1—Power Management Control/Status (D1:F0)	
	5.1.27	SS_CAPID—Subsystem ID and Vendor ID Capabilities (D1:F0)	110

	5.1.28	SS—Subsystem ID and Subsystem Vendor ID (D1:F0)	111
	5.1.29	MSI_CAPID-Message Signaled Interrupts Capability ID (D1:F0)	
	5.1.30	MC—Message Control (D1:F0)	
	5.1.31	MA—Message Address (D1:F0)	
	5.1.32	MD—Message Data (D1:F0)	
	5.1.33	PCI_EXPRESS_CAPL—PCI Express x8 link Capability List (D1:F0)	
	5.1.34	PCI_EXPRESS_CAP—PCI Express x8 link Capabilities (D1:F0)	
	5.1.35	DCAP—Device Capabilities (D1:F0)	
	5.1.36	DCTL—Device Control (D1:F0)	
	5.1.37	DSTS—Device Status (D1:F0)	
	5.1.38	LCAP—Link Capabilities (D1:F0)	117
	5.1.39	LCTL—Link Control (D1:F0)	117
	5.1.40	LSTS—Link Status (D1:F0)	118
	5.1.41	SLOTCAP—Slot Capabilities (D1:F0)	119
	5.1.42	SLOTCTL—Slot Control (D1:F0)	120
	5.1.43	SLOTSTS—Slot Status (D1:F0)	121
	5.1.44	RCTL—Root Control (D1:F0)	122
	5.1.45	RSTS—Root Status (D1:F0)	123
	5.1.46	PCI_EXPRESS_LC—PCI Express x8 link Legacy Control	123
	5.1.47	VCECH—Virtual Channel Enhanced Capability Header (D1:F0)	124
	5.1.48	PVCCAP1—Port VC Capability Register 1 (D1:F0)	124
	5.1.49	PVCCAP2—Port VC Capability Register 2 (D1:F0)	125
	5.1.50	PVCCTL—Port VC Control (D1:F0)	125
	5.1.51	VC0RCAP—VC0 Resource Capability (D1:F0)	126
	5.1.52	VC0RCTL—VC0 Resource Control (D1:F0)	
	5.1.53	VC0RSTS—VC0 Resource Status (D1:F0)	127
	5.1.54	VC1RCAP—VC1 Resource Capability (D1:F0)	127
	5.1.55	VC1RCTL—VC1 Resource Control (D1:F0)	
	5.1.56	VC1RSTS—VC1 Resource Status (D1:F0)	129
	5.1.57	RCLDECH—Root Complex Link Declaration Enhanced	
		Capability Header (D1:F0)	
	5.1.58	ESD—Element Self Description (D1:F0)	
	5.1.59	LE1D—Link Entry 1 Description (D1:F0)	
	5.1.60	LE1A—Link Entry 1 Address (D1:F0)	
	5.1.61	UESTS—Uncorrectable Error Status (D1:F0)	
	5.1.62	UEMSK—Uncorrectable Error Mask (D1:F0)	
	5.1.63	CESTS—Correctable Error Status (D1:F0)	
	5.1.64	PEGSSTS—PCI Express x8 link Sequence Status (D1:F0)	133
Direct N	Aedia Int	erface (DMI) RCRB	135
6.1		RB Configuration Register Details	
	6.1.1	DMIVCECH—DMI Virtual Channel Enhanced Capability Header	
	6.1.2	DMIPVCCAP1—DMI Port VC Capability Register 1	
	6.1.3	DMIPVCCAP2—DMI Port VC Capability Register 2	
	6.1.4	DMIPVCCTL—DMI Port VC Control	
	6.1.5	DMIVCORCAP—DMI VCO Resource Capability	
	6.1.6	DMIVC0RCTL0—DMI VC0 Resource Control	
	6.1.7	DMIVC0RSTS—DMI VC0 Resource Status	
	6.1.8	DMIVC1RCAP—DMI VC1 Resource Capability	
	6.1.9	DMIVC1RCTL1—DMI VC1 Resource Control	
	6.1.10	DMIVC1RSTS—DMI VC1 Resource Status	
	6.1.11	DMILCAP—DMI Link Capabilities	
		·	

7

	6.1.12	DMILCTL—DMI Link Control	141
	6.1.13	DMILSTS—DMI Link Status	141
	6.1.14	DMIUEMSK—DMI Uncorrectable Error Mask	142
Syste	m Addres	ss Map	
7.1	Legacy	Address Range	145
	7.1.1	DOS Range (0h – 9_FFFFh)	146
	7.1.2	Legacy Video Area (A_0000h-B_FFFFh)	146
	7.1.3	Expansion Area (C_0000h-D_FFFFh)	146
	7.1.4	Extended System BIOS Area (E_0000h-E_FFFFh)	147
	7.1.5	System BIOS Area (F_0000h-F_FFFFh)	147
	7.1.6	Programmable Attribute Map (PAM) Memory Area Details	148
7.2	Main M	lemory Address Range (1 MB to TOLUD)	148
	7.2.1	ISA Hole (15 MB-16 MB)	149
	7.2.2	TSEG	149
	7.2.3	Pre-allocated Memory	149
7.3	PCI Me	emory Address Range (TOLUD to 4 GB)	150
	7.3.1	APIC Configuration Space (FEC0_0000h-FECF_FFFFh)	151
	7.3.2	HSEG (FEDA_0000h-FEDB_FFFFh)	152
	7.3.3	FSB Interrupt Memory Space (FEE0_0000-FEEF_FFFF)	152
	7.3.4	High BIOS Area	
7.4	Main M	lemory Address Space (4 GB to Remaplimit)	152
	7.4.1	Top of Memory	152
	7.4.2	Memory Re-claim Background	153
	7.4.3	Memory Re-mapping	
	7.4.4	PCI Express Configuration Address Space	154
	7.4.5	PCI Express	154
7.5	System	n Management Mode (SMM)	154
	7.5.1	SMM Space Definition	155
	7.5.2	SMM Space Restrictions	155
	7.5.3	SMM Space Combinations	155
	7.5.4	SMM Control Combinations	156
	7.5.5	SMM Space Decode and Transaction Handling	156
	7.5.6	CPU WB Transaction to an Enabled SMM Address Space	156
	7.5.7	Memory Shadowing	157
	7.5.8	I/O Address Space	157
	7.5.9	PCI Express I/O Address Mapping	
	7.5.10	MCH Decode Rules and Cross-Bridge Address Mapping	157
	7.5.11	Legacy VGA and I/O Range Decode Rules	158

8	Funct	tional Description	
	8.1	Host Interface	159
		8.1.1 FSB IOQ Depth	159
		8.1.2 FSB OOQ Depth	159
		8.1.3 FSB GTL+ Termination	159
		8.1.4 FSB Dynamic Bus Inversion	159
	8.2	System Memory Controller	
		8.2.1 System Memory Configuration Registers Overview	161
		8.2.2 DRAM Technologies and Organization	162
		8.2.3 DRAM Clock Generation	165
		8.2.4 DDR2 On Die Terminations	165
	8.3	PCI Express	165
		8.3.1 PCI Express Architecture	165
	8.4	Power Management	166
	8.5	Clocking	166
9	Electr	rical Characteristics	
	9.1	Absolute Minimum and Maximum Ratings	
	9.2	Power Characteristics	
	9.3	Signal Groups	
	9.4	DC Characteristics	
10	Ballou	ut and Package Information	
	10.1	Ballout	
	10.2	MCH Ballout Table	
	10.3	Package	
11	Testa	bility	
	11.1	Complimentary Pins	
	11.2	XOR Test Mode Initialization	
	11.2	XOR Chain Definition	
	11.4	XOR Chains	
	11.5	Pads Excluded from XOR Mode(s)	

Figures

1-1	Intel® E7230 Chipset System Block Diagram Example 1	15
1-2	Intel® E7230 Chipset System Block Diagram Example 2	16
2-1	Signal Information Diagram	24
3-1	Conceptual Intel® E7230 Chipset Platform PCI Configuration Diagram	37
3-2	Register Organization	38
3-3	Memory Map to PCI Express Device Configuration Space	40
3-4	MCH Configuration Cycle Flow chart	41
4-1	Link Declaration Topology	86
7-1	System Address Ranges	144
7-2	Microsoft MS-DOS* Legacy Address Range	145
7-3	Main Memory Address Range	148
7-4	PCI Memory Address Range	
8-1	System Memory Styles	161
10-1	MCH Ballout Diagram for DDR2 (Top View – Left Side)	176
10-2	MCH Ballout Diagram (Top View – Right Side)	177
10-1	MCH Package Dimensions (Top View)	199
10-2	MCH Package Dimensions (Side View)	200
10-3	MCH Package Dimensions (Bottom View)	200
11-1	XOR Test Mode Initialization Cycles	202

Tables

4-1	Host Bridge Register Address Map (D0:F0)	47
4-2	MCHBAR Register Address Map	74
4-3	Egress Port Register Address Map	
5-1	Host-PCI Express Bridge Register Address Map (D1:F0)	91
6-1	DMI Register Address Map	135
7-1	Expansion Area Memory Segments	147
7-2	Extended System BIOS Area Memory Segments	147
7-3	System BIOS Area Memory Segments	147
7-4	Pre-Allocated Memory Example for 64 MB DRAM, 1 MB VGA and 1 MB TSEG	149
7-5	SMM Space Table	155
7-6	SMM Control Table	156
8-1	Sample System Memory Organization with Interleaved Channels	
8-2	Sample System Memory Organization with Asymmetric Channels	160
8-3	DDR2 DIMM Supported Configurations	163
8-4	DRAM Address Translation (Single/Dual Channel Asymmetric Mode)	163
8-5	DRAM Address Translation (Dual Channel Symmetric Mode)	164
9-1	Absolute Minimum and Maximum Ratings	167
9-2	Non Memory Power Characteristics	168
9-3	DDR2 Power Characteristics	168
9-4	Signal Groups	169
9-5	DC Characteristics	171
11-1	Complimentary Pins to Drive	201
11-2	XOR Chain Outputs	202
11-3	XOR Chain #0	203
11-4	XOR Chain #1	204
11-5	XOR Chain #2	206

	XOR Chain #3	
	XOR Chain #4	
11-8	XOR Chain #5	209
	XOR Chain #6	
11-10	XOR Chain #7	
	XOR Chain #8	
	XOR Chain #9	
	XOR Pad Exclusion List	

Revision History

Rev	Description	Date
001	Initial Release	July 2005

§

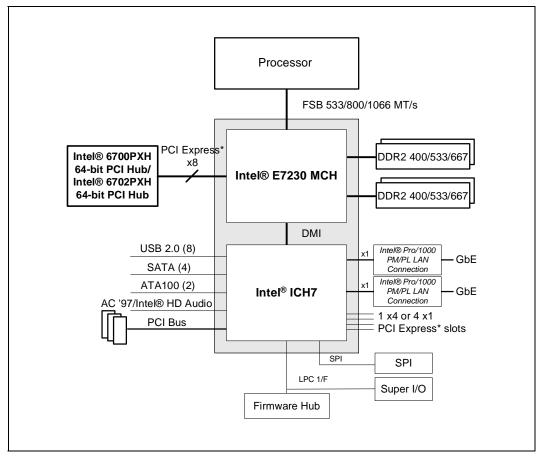
MCH Features

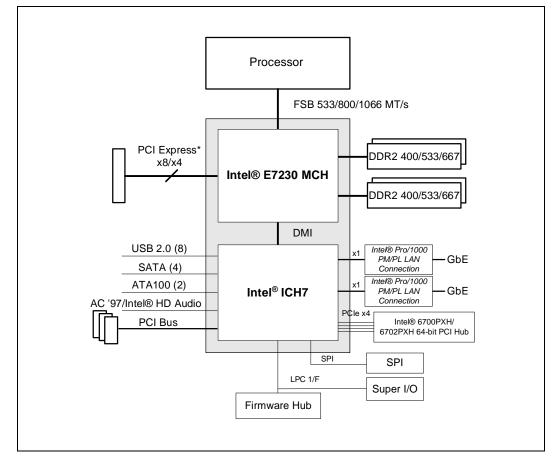
- Processor Interface
 - --One Intel® Pentium® 4 Processor in the LGA775 Land Grid Array package on the 90 nm process and Intel® Pentium® D Processor
 - Supports Pentium 4 processor FSB interrupt delivery
 - —533/800/1066 MT/s (133/200/266 MHz core) FSB
 - Supports Hyper-Threading Technology (HT Technology)
 - -FSB Dynamic Bus Inversion (DBI)
 - 36-bit host addressing for access to 8 GB of memory space
 - —12-deep In-Order Queue
 - -1-deep Defer Queue
 - -GTL+ bus driver with integrated GTL termination resistors
 - -Supports a Cache Line Size of 64 bytes
- DMI Interface
 - —A chip-to-chip connection interface to Intel® ICH7
 - —2 GB/s point-to-point DMI to ICH7 (1 GB/s each direction)
 - 100 MHz reference clock (shared with PCI Express Interface)
 - -36-bit downstream addressing
 - -Messages and Error Handling

■ PCI Express* Interface Support

- —One or x1 PCI Express port
- --- Compatible with the PCI Express Base Specification Revision 1.0a
- -Raw bit rate on data pins of 2.5 Gb/s resulting in a real bandwidth per pair of 250 MB/s
- -Maximum theoretical aggregate bandwidth of

- System Memory
 - -8 GB maximum memory
 - -Up to two 64-bit wide DDR2 SDRAM channels
 - DDR2 memory DIMM frequencies of 400 MHz, 533 MHz, and 667 MHz.
 - -Asymmetric or Interleaved modes
 - -Bandwidth up to 10.7 GB/s (DDR2 667) in dualchannel Interleaved mode
 - -ECC (Error Correcting Code) memory
 - -256 Mb, 512 Mb and 1 Gb DDR2 technologies
 - Four banks for DDR2 devices up to 512 Mb density; eight banks for 1 Gb DDR2 devices
 - -Unbuffered DIMMs only
 - -Page sizes of 4 KB, 8 KB, and 16 KB
 - -Opportunistic refresh
 - —Up to 64 simultaneously open pages
 - ----SPD (Serial Presence Detect) scheme for DIMM detection support
 - Supports configurations defined in the JEDEC DDR2 DIMM specification only
- Package
 - -34 mm x 34 mm, 1202 balls, non-grid pattern
 - -Lead Free and leaded MCH


int_{el} 1 *Introduction*


The Intel® E7230 chipset is designed for use with Intel® Pentium® 4 Processor in the LGA775 Land Grid Array package on the 90 nm process, Intel® Pentium® D Processor in entry-level UP server platforms. The chipset contains the following components: Memory Controller Hub (MCH), Intel® I/O Controller Hub 7 (ICH7), and Intel® 6700PXH 64-bit PCI Hub / Intel® 6702PXH 64-bit PCI Hub (PCI Express* x8 equivalent). The MCH provides the interface to the processor, main memory, PCI Express, and the ICH7. The ICH7 is the seventh generation I/O Controller Hub and provides a multitude of I/O related functions. Figure 1-1 and Figure 1-2 show example system block diagrams for the Intel® E7230 chipset.

The document is the datasheet for the Intel® E7230 MCH. Topics covered include: signal description, system memory map, register descriptions, a description of the MCH interfaces and major functional units, electrical characteristics, ballout definitions, and package characteristics.

Note: Unless otherwise specified, ICH7 refers to the Intel® 82801GB ICH7 and 82801GR ICH7R I/O Controller Hub components.

Figure 1-1. Intel® E7230 Chipset System Block Diagram Example 1

Figure 1-2. Intel® E7230 Chipset System Block Diagram Example 2

1.1 Terminology

Term	Description
Core	The internal base logic in the MCH
DED	Double-bit Error Detect
DBI	Dynamic Bus Inversion
DDR2	A second generation Double Data Rate SDRAM memory technology
DMI	MCH-ICH Direct Media Interface is the chip-to-chip connection between the MCH and ICH7. This interface is based on the standard PCI Express specification.
ECC	Error Correcting Code
FSB	Front Side Bus. This term is synonymous with Host bus or processor bus.
Full Reset	Full reset is when PWROK is deasserted. Warm reset is when both RSTIN# and PWROK are asserted.
Host	This term is used synonymously with processor.

Term	Description
Intel® 6700PXH 64-bit PCI Hub /Intel® 6702PXH 64-bit PCI Hub	The Intel® 6700PXH 64-bit PCI Hub/Intel® 6702PXH 64-bit PCI Hub provides connection between the PCI Express port and a single independent PCI or PCI-X* Bus interface. The Intel® 6700PXH 64-bit PCI Hub/Intel 6702PXH 64-bit PCI Hub provides configuration support for 32- or 64-bit PCI devices operating at 33 MHz, 66 MHz, 100 MHz, or 133 MHz.
Intel® ICH7	Seventh generation I/O Controller Hub component that contains additional functionality compared to previous Intel® ICHs, which contain the primary PCI interface, LPC interface, USB2, ATA-100, and other I/O functions. It communicates with the MCH over a proprietary interconnect called DMI. For this MCH, the term ICH refers to Intel® ICH7
INTx	An interrupt request signal where X stands for interrupts A,B,C and D.
мсн	Memory Controller Hub component that contains the processor interface, DRAM controller, and PCI Express port. It communicates with the I/O controller hub (Intel® ICH7) over the DMI. Throughout this document MCH refers to the Intel® E7230 MCH, unless otherwise specified.
MSI	Message Signaled Interrupt. A transaction initiated outside the host, conveying interrupt information to the receiving agent through the same path that normally carries read and write commands.
PCI Express	Third Generation Input Output called PCI Express. A high-speed serial interface whose configuration is software compatible with the existing PCI specifications.
Primary PCI	The physical PCI bus that is driven directly by the ICH7 component. Communication between Primary PCI and the MCH occurs over DMI. Note that the Primary PCI bus is not PCI Bus 0 from a configuration standpoint.
Processor	Refers to the Intel® Pentium® 4 Processor in the LGA775 Land Grid Array package on the 90 nm process and Intel® Pentium® D Processor
SCI	System Control Interrupt. Used in ACPI protocol.
SEC	Single-bit Error Correct
SERR	An indication that an unrecoverable error has occurred on an I/O bus.
SMI	System Management Interrupt. Used to indicate any of several system conditions such as thermal sensor events, throttling activated, access to System Management RAM, chassis open, or other system state related activity.
Rank	A unit of DRAM corresponding to eight x8 SDRAM devices in parallel or four x16 SDRAM devices in parallel, ignoring ECC. These devices are usually, but not always, mounted on a single side of a DIMM.
TOLM	Top Of Low Memory. The highest address below 4 GB for which a processor-initiated memory read or write transaction will create a corresponding cycle to DRAM on the memory interface.
vco	Voltage Controlled Oscillator

1.2 Reference Documents

Document Name	Version	Availability
Intel® I/O Controller Hub 7 (ICH7) Family Datasheet		http://developer.intel.com//design/chipsets /datashts/307013.htm
Intel® E7230 Chipset Memory Controller Hub (MCH) Thermal/Mechanical Design Guide		http://developer.intel.com/design/chipsets/ designex/308334.htm
Intel® E7230 Chipset Memory Controller Hub (MCH) Specification Update		http://developer.intel.com/design/chipsets/ specupdt/308335.htm

Document Name	Version	Availability
Advanced Configuration and Power Interface Specification	3.0	http://www.acpi.info/
The PCI Local Bus Specification	3.0	http://www.pcisig.com/specifications
PCI Express Specification	1.0a	http://www.pcisig.com/specifications

1.3 MCH Overview

The Intel® E7230 MCH connects to the processor as shown in Figure 1-1 and Figure 1-2. A major role of the MCH in a system is to manage the flow of information between its four interfaces: the processor interface (FSB), the system memory interface (DRAM controller), the DMI interface, and the PCI Express port. This includes arbitrating between FSB, DMI and PCI Express when each initiates an operation.

The processor interface supports the Intel® Pentium® 4 processor subset of the Extended Mode of the Scalable Bus Protocol. The MCH supports up to two channels of DDR2 SDRAM. It also supports the PCI Express based Intel® 6700PXH 64-bit PCI Hub/Intel® 6702PXH 64-bit PCI Hub.

To increase system performance, the MCH incorporates several queues and a write cache. The MCH also contains advanced power management logic.

1.3.1 Host Interface

The MCH is optimized for the Intel® Pentium® 4 Processor in the LGA775 Land Grid Array package on the 90 nm process and Intel® Pentium® D Processor. The MCH supports FSB speed of 533MT/s (133 MHz), 800MT/s (200 MHz) and 1066 MT/s (266 MHz) using a scalable FSB Vcc_CPU. It supports the Pentium® 4 processor subset of the Extended Mode Scalable Bus Protocol. The primary enhancements over the Compatible Mode P6 bus protocol are source synchronous double-pumped (2x) address and source synchronous quad-pumped (4x) data. Other MCH supported features of the host interface include: Hyper-Threading Technology (HT Technology), Pentium 4 and Pentium D processor FSB interrupt delivery, FSB Dynamic Bus Inversion (DBI), 12-deep In-Order Queue, and 1-deep Defer Queue.

The MCH supports 36-bit host addressing, decoding up to 8 GB of the processor's usable memory address space. Host initiated I/O cycles are decoded to PCI Express, DMI, or the MCH configuration space. Host initiated memory cycles are decoded to PCI Express, DMI or main memory. PCI Express device accesses to non-cacheable system memory are not snooped on the host bus. Memory accesses initiated from PCI Express using PCI semantics and from DMI to system SDRAM will be snooped on the host bus.

1.3.2 System Memory Interface

The MCH integrates a system memory DDR2 controller with two 64-bit wide interfaces.

Only Double Data Rate 2 (DDR2) memory is supported; consequently, the buffers support only SSTL_1.8 V signal interfaces. The memory controller interface is fully configurable through a set of control registers. Features of the MCH memory controller include:

• Maximum memory size is 8 GB.

- The MCH System Memory Controller directly supports one or two channels of memory (each channel consisting of 64 data lines)
 - The memory channels are asymmetric: "Stacked" channels are assigned addresses serially. Channel B addresses are assigned after all Channel A addresses.
 - The memory channels are interleaved: Addresses are ping-ponged between the channels after each cache line (64 byte boundary).
- Supports DDR2 memory DIMM frequencies of 400 MHz, 533 MHz, and 667 MHz. The speed used in all channels is the speed of the slowest DIMM in the system.
- Available bandwidth up to 5.3 GB/s (DDR2 667) for single-channel mode or dual-channel asymmetric mode, and 10.7 GB/s (DDR2 667) for dual-channel interleaved mode.
- Supports two channels of ECC DDR2 DIMMs (Each channel consists of 64 data lines plus eight additional bits for ECC).
- Supports 256 Mb, 512 Mb, and 1 Gb technologies (x8) for DDR2-400 and DDR2-533; supports 256 Mb and 512 Mb technologies (x8) for DDR2-667.
- Supports four banks for all DDR2 devices up to 512 Mb density. Supports eight banks for 1 Gb DDR2 devices.
- DDR2-667 4-4-4 is not supported.
- Supports only unbuffered DIMMs.
- Supports opportunistic refresh.
- In dual channel mode, the MCH supports 64 simultaneously open pages.
- SPD (Serial Presence Detect) scheme for DIMM detection support.
- Supports configurations defined in the JEDEC DDR2 DIMM specification only.
- Supports a burst length of 8 for single-channel and dual-channel interleaved and asymmetric operating modes.
- Supports Enhanced Memory Interleave.

1.3.3 Direct Media Interface (DMI)

Direct Media Interface (DMI) is the chip-to-chip connection between the MCH and the ICH. This high-speed interface integrates advanced priority-based servicing allowing for concurrent traffic and true isochronous transfer capabilities. Base functionality is completely software transparent permitting current and legacy software to operate normally.

To provide for true isochronous transfers and configurable Quality of Service (QoS) transactions, the ICH7 supports two virtual channels on DMI: VC0 and VC1. These two channels provide a fixed arbitration scheme where VC1 is always the highest priority. VC0 is the default conduit of traffic for DMI and is always enabled. VC1 must be specifically enabled and configured at both ends of the DMI link (i.e., the ICH7 and MCH).

Configuration registers for DMI, virtual channel support, and DMI active state power management (ASPM) are in the RCRB space in the MCH Register Description. Features of the DMI include:

- A chip-to-chip connection interface to ICH7
- 2 GB/s point-to-point DMI interface to ICH7 (1 GB/s each direction)
- 100 MHz reference clock (shared with PCI Express x8 interface).
- 32-bit downstream addressing

- APIC and MSI interrupt messaging support. Will send Intel-defined "End Of Interrupt" broadcast message when initiated by the CPU.
- Message Signaled Interrupt (MSI) messages
- SMI, SCI and SERR event notification
- Legacy support for ISA regime protocol (PHOLD/PHOLDA) required for parallel port DMA, floppy drive, and LPC bus masters

1.3.4 Intel® 6700PXH 64-bit PCI Hub/Intel® 6702PXH 64-bit PCI Hub Interface (PCI Express* x8 Equivalent)

The MCH contains an x8 lane equivalent PCI Express port design for the Intel 6700PXH 64-bit PCI Hub/Intel 6702PXH 64-bit PCI Hub component. The Intel 6700PXH 64-bit PCI Hub/Intel 6702PXH 64-bit PCI Hub interface is fully compliant to the PCI Express Base Specification, Rev 1.0. The PCI Express port operates at a frequency of 2.5 Gb/s while employing 8b/10b encoding. The maximum theoretical realized aggregate bandwidth is 4 GB/s when in x8 mode. Features of the PCI Express port include:

- One PCI Express x8 port, fully compatible to the *PCI Express Base Specification*, Revision 1.0a.
- Interface supported as a x8 or x4 or x1-lane port
- Base PCI Express frequency of 2.5 Gb/s only
- Raw bit-rate on the data pins of 2.5 Gb/s, resulting in a real bandwidth per pair of 250 MB/s given the 8b/10b encoding used to transmit data across this interface
- Maximum theoretical realized bandwidth on interface of 2 GB/s in each direction simultaneously, for an aggregate of 4 GB/s when x8
- PCI Express Extended Configuration Space. The first 256 bytes of configuration space alias directly to the PCI Compatibility configuration space. The remaining portion of the fixed 4 KB block of memory-mapped space above that (starting at 100h) is known as extended configuration space.
- PCI Express Enhanced Addressing Mechanism accesses the device configuration space in a flat memory mapped fashion
- · Automatic discovery, negotiation, and training of link out of reset
- Supports traditional PCI style traffic (asynchronous snooped, PCI ordering)
- Hierarchical PCI-compliant configuration mechanism for downstream devices (i.e., normal PCI 2.3 Configuration space as a PCI-to-PCI Bridge)

1.3.5 System Interrupts

- Supports both 8259 and Pentium 4 processor FSB interrupt delivery mechanisms
- Supports interrupts signaled as upstream Memory Writes from PCI Express and DMI
 - MSIs routed directly to FSB
 - From I/OxAPICs
 - Provides redirection for IPI (Inter-Processor Interrupts) and upstream interrupts to the FSB

1.3.6 MCH Clocking

The differential Host clock (HCLKP/HCLKN) is set to 133/200/266 MHz, supporting transfer rates of 533/800/1066 MT/s, respectively. The Host PLL generates 2x, 4x, and 8x versions of the host clock for internal optimizations. The MCH core clock is synchronized to the host clock.

The internal and external Memory clocks of 266 and 333 MHz are generated from one of two MCH PLLs that use the Host clock as a reference. Also included are 2x and 4x clocks for internal optimizations.

The PCI Express core clock of 250 MHz is generated from separate PCI Express PLL. This clock uses the fixed 100 MHz Serial Reference Clock (GCLKP/GCLKN) for reference.

All of the above mentioned clocks are capable of tolerating Spread Spectrum clocking as defined in the Clock Generator Specification. Host, Memory, and PCI Express PLLs, and all associated internal clocks are disabled until PWROK is asserted.

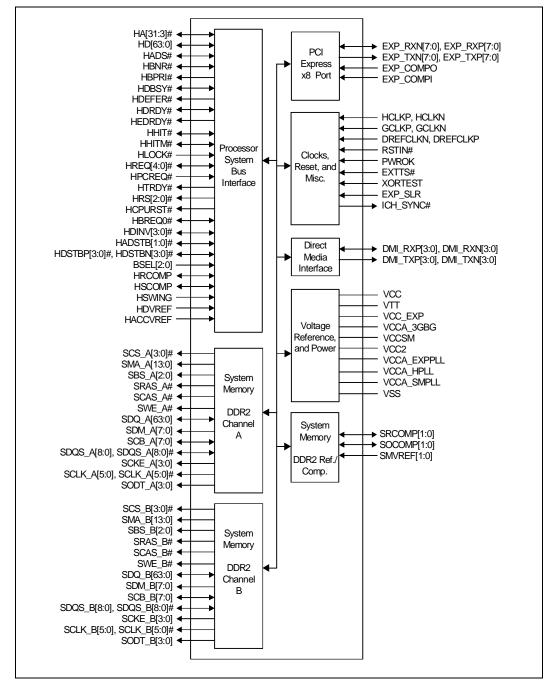
1.3.7 Power Management

The MCH Power Management support includes:

- SMRAM space remapping to A0000h (128 KB)
- Supports extended SMRAM space above 256 MB, additional 1 MB TSEG from the Top of Low Usable DRAM (TOLUD), and cacheable (cacheability controlled by processor)
- ACPI Rev 1.0 compatible power management
- Supports processor states: C0 and C1
- Supports system states: S0, S4 and S5
- Supports processor Thermal Management 2 (TM2)
- Microsoft Windows* NT Hardware Design Guide v1.0 compliant

§

Introduction


intel

intel. 2 Signal Description

This section provides a detailed description of MCH signals. The signals are arranged in functional groups according to their associated interface.

The following notations are used to describe the signal type:

PCIE	PCI Express interface signals. These signals are compatible with PCI Express 1.0 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+ - D-) * 2 = 1.2$ Vmax. Single-ended maximum = 1.5 V. Single-ended minimum = 0 V.
DMI	Direct Media Interface signals. These signals are compatible with PCI Express 1.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3 V tolerant. Differential voltage spec = $(D+ - D-) * 2 = 1.2$ Vmax. Single-ended maximum = 1.5 V. Single-ended minimum = 0 V.
CMOS	CMOS buffers. 1.5 V tolerant.
COD	CMOS Open Drain buffers. 2.5 V tolerant.
HCSL	Host Clock Signal Level buffers. Current mode differential pair. Differential typical swing = $(D+ - D-) * 2 = 1.4 \text{ V}$. Single ended input tolerant from -0.35 V to 1.2 V. Typical crossing voltage 0.35 V.
HVCMOS	High Voltage CMOS buffers. 2.5 V tolerant.
HVIN	High Voltage CMOS input-only buffers. 3.3 V tolerant.
SSTL-1.8	Stub Series Termination Logic. These are 1.8 V output capable buffers. 1.8 V tolerant.
Α	Analog reference or output. These signals may be used as a threshold voltage or for buffer compensation.

2.1 Host Interface Signals

Note: Unless otherwise noted, the voltage level for all signals in this interface is tied to the termination voltage of the Host Bus (V_{TT}).

Signal Name	Туре	Description		
HADS#	I/O GTL+	Address Strobe: The CPU bus owner asserts HADS# to indicate the first of two cycles of a request phase. The MCH can assert this signal for snoop cycles and interrupt messages.		
HBNR#	I/O GTL+	Block Next Request: This signal is us owner from issuing new requests. This the CPU bus pipeline depth.		
HBPRI#	O GTL+	Priority Agent Bus Request: The MCH is the only Priority Agent on the CPU bus. It asserts this signal to obtain the ownership of the address bus. This signal has priority over symmetric bus requests and will cause the current symmetric owner to stop issuing new transactions unless the HLOCK# signal was asserted.		
HBREQ0#	I/O GTL+	Bus Request 0: The MCH pulls the processor's bus HBREQ0# signal low during HCPURST#. The processor samples this signal on the active-to-inactive transition of HCPURST#. The minimum setup time for this signal is 4 HCLKs. The minimum hold time is 2 HCLKs and the maximum hold time is 20 HCLKs. HBREQ0# should be tristated after the hold time requirement has been satisfied.		
HCPURST#	O GTL+	CPU Reset: The HCPURST# pin is an output from the MCH. The MCH asserts HCPURST# while RSTIN# is asserted and for approximately 1 ms after RSTIN# is de-asserted. The HCPURST# allows the CPUs to begin execution in a known state.		
		Note that the ICH7 must provide CPU frequency select strap setup and hold times around HCPURST#. This requires strict synchronization between MCH HCPURST# de-assertion and the ICH7 driving the straps.		
HDBSY#	I/O GTL+	Data Bus Busy: This signal is used by the data bus owner to hold the data bus for transfers requiring more than one cycle.		
HDEFER#	O GTL+	Defer: Signals that the MCH will terminate the transaction currently being snooped with either a deferred response or with a retry response.		
HDINV[3:0]#	I/O GTL+	Dynamic Bus Inversion: Driven along with the HD[63:0] signals, HDINV[3:0]# indicate if the associated signals are inverted or not. HDINV[3:0]# are asserted such that the number of data bits driven electrically low (low voltage) within the corresponding 16 bit group never exceeds 8.		
		HDINV[x]#	Data Bits	
		HDINV[3]#	HD[63:48]#	
		HDINV[2]#	HD[47:32]#	
		HDINV[1]#	HD[31:16]#	
		HDINV[0]#	HD[15:0]#	
HDRDY#	I/O GTL+	Data Ready: This signal is asserted for each cycle that data is transferred.		
HEDRDY#	O GTL+	Early Data Ready: This signal indicates that the data phase of a read transaction will start on the bus exactly one common clock after assertion.s		

Signal Name	Туре		Description	
HA[35:3]#	I/O GTL+	Host Address Bus: HA[35:3]# connect to the CPU address bus. During CPU cycles, the HA[35:3]# are inputs. The MCH drives HA[35:3]# during snoop cycles on behalf of DMI and PCI Express initiators. HA[35:3]# are transferred at 2x rate.		
HADSTB[1:0]#	I/O GTL+	Host Address Strobe: This sig transfer HA[31:3]# and HREQ[4		
HD[63:0]#	I/O GTL+	Host Data: These signals are of HD[63:0]# is transferred at 4x ra on the CPU bus, depending on	ate. Note that the data s	ignals may be inverted
HDSTBP[3:0]# HDSTBN[3:0]#	I/O GTL+	Differential Host Data Strobes: The differential source synchronous strobes used to transfer HD[63:0]# and HDINV[3:0]# at 4x transfer rate. These signals are named this way because they are not level sensitive. Data is captured on the falling edge of both strobes. Hence, they are pseudo-differential, and not true differential.		
		Strobes	Data	Bits
		HDSTBP[3]#, HDSTBN[3]#	HD[63:48]#	HDINV[3]#
		HDSTBP[2]#, HDSTBN[2]#	HD[47:32]#	HDINV[2]#
		HDSTBP[1]#, HDSTBN[1]#	HD[31:16]#	HDINV[1]#
		HDSTBP[0]#, HDSTBN[0]#	HD[15:0]#	HDINV[0]#
HHIT#	I/O GTL+	Hit: This signal indicates that a caching agent holds an unmodified version of the requested line. It is also driven in conjunction with HHITM# by the target to extend the snoop window.		
HHITM#	I/O GTL+	Hit Modified: This signal indicates that a caching agent holds a modified version of the requested line and that this agent assumes responsibility for providing the line. This signal is also driven in conjunction with HHIT# to extend the snoop window.		
HLOCK#	I/O GTL+	Host Lock: All CPU bus cycles sampled with the assertion of HLOCK# and HADS#, until the negation of HLOCK# must be atomic (i.e. no DMI or PCI Express accesses to DRAM are allowed when HLOCK# is asserted by the CPU).		
HPCREQ#	l GTL+ 2x	Precharge Request: The CPU provides a "hint" to the MCH that it is OK to close the DRAM page of the memory read request with which the hint is associated. The MCH uses this information to schedule the read request to memory using the special "AutoPrecharge" attribute. This causes the DRAM to immediately close (Precharge) the page after the read data has been returned. This allows subsequent CPU requests to more quickly access information on other DRAM pages, since it will no longer be necessary to close an open page prior to opening the proper page. HPCREQ# is asserted by the requesting agent during both halves of Request Phase. The same information is provided in both halves of the request phase.		
HREQ[4:0]#	I/O GTL+ 2x	Host Request Command: This signal defines the attributes of the request. HREQ[4:0]# are transferred at 2x rate. They are asserted by the requesting agent during both halves of Request Phase. In the first half the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second half the signals carry additional information to define the complete transaction type.		
HTRDY#	O GTL+	Host Target Ready: This signal indicates that the target of the CPU transaction is able to enter the data transfer phase.		

Signal Name	Туре	Description		
HRS[2:0]#	0	Response	Encoding	Response type
	GTL+	Signals: These signals	000	Idle state
		indicates type of response:	001	Retry response
		or response.	010	Deferred response
			011	Reserved (not driven by MCH)
			100	Hard Failure (not driven by MCH)
			101	No data response
			110	Implicit Writeback
			111	Normal data response
BSEL[2:0]	I CMOS	Bus Speed Select: At the de-assertion of RSTIN#, the value sampled on these pins determines the expected frequency of the bus.		
HRCOMP	I/O	Host RCOMP: This signal is used to calibrate the Host GTL+ I/O buffers.		
	CMOS	This signal is powered by the Host Interface termination rail (Vtt).		
HSCOMP	I/O CMOS	Slew Rate Compensation: This signal provides compensation for the Host Interface.		
HSWING	l A	Host Voltage Swing: This signal provides the reference voltage used by FSB RCOMP circuits. HSWING is used for the signals handled by HRCOMP.		
HDVREE	1	,		
	A	Host Reference Voltage: This signal is the reference voltage input for the Data signals of the Host GTL interface.		
HACCVREF	I A	Host Reference Voltage . This signal is the reference voltage input for the Address and Common clock signals of the Host GTL interface.		

2.2 DDR2 DRAM Channel A Interface

Signal Name	Туре	Description
SCB_A[7:0]	I/O SSTL-1.8 2x	ECC Check Byte: These signals are used for ECC.
SCLK_A[5:0]	O SSTL-1.8	SDRAM Differential Clock: (3 per DIMM) SCLK_A and its complement SCLK_A# signal make a differential clock pair output. The crossing of the positive edge of SCLK_A and the negative edge of its complement SCLK_A# are used to sample the command and control signals on the SDRAM.
SCLK_A[5:0]#	O SSTL-1.8	SDRAM Complementary Differential Clock: (3 per DIMM) These are the complementary differential DDR2 clock signals.
SCS_A[3:0]#	O SSTL-1.8	Chip Select: (1 per Rank) These signals select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank.
SMA_A[13:0]	O SSTL-1.8	Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM
SBS_A[2:0]	O SSTL-1.8	Bank Select: These signals define which banks are selected within each SDRAM rank. DDR2: 1 Gb technology is 8 banks.

Signal Name	Туре	Description
SRAS_A#	O SSTL-1.8	Row Address Strobe: This signal is used with SCAS_A# and SWE_A# (along with SCS_A#) to define the SDRAM commands.
SCAS_A#	O SSTL-1.8	Column Address Strobe: This signal is used with SRAS_A# and SWE_A# (along with SCS_A#) to define the SDRAM commands.
SWE_A#	O SSTL-1.8	Write Enable: This signal is used with SCAS_A# and SRAS_A# (along with SCS_A#) to define the SDRAM commands.
SDQ_A[63:0]	I/O SSTL-1.8 2x	Data Lines: SDQ_A signals interface to the SDRAM data bus.
SDM_A[7:0]	O SSTL-1.8 2x	Data Mask: When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SDM_A signal for every data byte lane.
SDQS_A[8:0]	I/O SSTL-1.8 2x	Data Strobes: For DDR2, SDQS_A and its complement SDQS_A# signal make up a differential strobe pair. The data is captured at the crossing point of SDQS_A and its complement SDQS_A# during read and write transactions.
SDQS_A[8:0]#	l/O SSTL-1.8 2x	Data Strobe Complements: These are the complementary DDR2 strobe signals.
SCKE_A[3:0]	O SSTL-1.8	Clock Enable: (1 per Rank) SCKE_A is used to initialize the SDRAMs during power-up, and to power-down SDRAM ranks.
SODT_A[3:0]	O SSTL-1.8	On Die Termination: These signals are Active On-die Termination control signals for DDR2 devices.

2.3 DDR2 DRAM Channel B Interface

Signal Name	Туре	Description
SCB_B[7:0]	I/O SSTL-1.8 2x	ECC Check Byte: These signals are used for ECC.
SCLK_B[5:0]	O SSTL-1.8	SDRAM Differential Clock: (3 per DIMM) SCLK_B and its complement SCLK_B# signal make a differential clock pair output. The crossing of the positive edge of SCLK_B and the negative edge of its complement SCLK_B# are used to sample the command and control signals on the SDRAM.
SCLK_B[5:0]#	O SSTL-1.8	SDRAM Complementary Differential Clock: (3 per DIMM) These are the complementary Differential DDR2 Clock signals.
SCS_B[3:0]#	O SSTL-1.8	Chip Select: (1 per Rank) These signals select particular SDRAM components during the active state. There is one Chip Select for each SDRAM rank
SMA_B[13:0]	O SSTL-1.8	Memory Address: These signals are used to provide the multiplexed row and column address to the SDRAM
SBS_B[2:0]	O SSTL-1.8	Bank Select: These signals define which banks are selected within each SDRAM rank. DDR2: 1 Gb technology is 8 banks.
SRAS_B#	O SSTL-1.8	Row Address Strobe: This signal is used with SCAS_B# and SWE_B# (along with SCS_B#) to define the SDRAM commands
SCAS_B#	O SSTL-1.8	Column Address Strobe: This signal is used with SRAS_B# and SWE_B# (along with SCS_B#) to define the SDRAM commands.

Signal Name	Туре	Description
SWE_B#	O SSTL-1.8	Write Enable: This signal is used with SCAS_B# and SRAS_B# (along with SCS_B#) to define the SDRAM commands.
SDQ_B[63:0]	I/O SSTL-1.8 2x	Data Lines: SDQ_B signals interface to the SDRAM data bus
SDM_B[7:0]	O SSTL-1.8 2x	Data Mask: When activated during writes, the corresponding data groups in the SDRAM are masked. There is one SBDM for every data byte lane.
SDQS_B[8:0]	I/O SSTL-1.8 2x	Data Strobes: For DDR2, SDQS_B and its complement SDQS_B# make up a differential strobe pair. The data is captured at the crossing point of SDQS_B and its complement SDQS_B# during read and write transactions.
SDQS_B[8:0]#	I/O SSTL-1.8 2x	Data Strobe Complements: These are the complementary DDR2 strobe signals.
SCKE_B[3:0]	O SSTL-1.8	Clock Enable: (1 per Rank) SCKE_B is used to initialize the SDRAMs during power-up, and to power-down SDRAM ranks.
SODT_B[3:0]	O SSTL-1.8	On Die Termination: These signals are Active On-die Termination control signals for DDR2 devices.

2.4 DDR2 DRAM Reference and Compensation

Signal Name	Туре	Description
SRCOMP[1:0]	I/O	System Memory RCOMP
SOCOMP[1:0]	I/O A	DDR2 On-Die DRAM Over Current Detection (OCD) driver compensation
SMVREF[1:0]	I A	SDRAM Reference Voltage: Reference voltage inputs for DQ, CB, DQS, and DQS# input signals.

2.5 PCI Express Interface Signals

Unless otherwise specified, PCI Express signals are AC coupled, so the only voltage specified is a maximum 1.2 V differential swing.

Signal Name	Туре	Description
EXP_RXN[7:0] EXP_RXP[7:0]	I PCIE	PCI Express Receive Differential Pair
EXP_TXN[7:0] EXP_TXP[7:0]	O PCIE	PCI Express Transmit Differential Pair
EXP_COMPO	I A	PCI Express Output Current Compensation
EXP_COMPI	I A	PCI Express Input Current Compensation

2.6 Clocks, Reset, and Miscellaneous

Signal Name	Туре	Description	
HCLKP HCLKN	I HCSL	Differential Host Clock In: These pins receive a differential host clock from the external clock synthesizer. This clock is used by all of the MCH logic that is in the Host clock domain. Memory domain clocks are also derived from this source.	
GCLKP GCLKN	I HCSL	Differential PCI Express Clock In: These pins receive a differential 100 MHz Serial Reference Clock from the external clock synthesizer. This clock is used to generate the clocks necessary for the support of PCI Express.	
RSTIN#	I HVIN	Reset In: When asserted, this signal will asynchronously reset the MCH logic. This signal is connected to the PCIRST# output of the ICH7. All PCI Express output signals will also tri-state compatible to <i>PCI Express Specification</i> Rev 1.0a.	
		This signal is 3.3V tolerant.	
PWROK	I HVIN	Power OK: When asserted, PWROK is an indication to the MCH that core power has been stable for at least 10 $\mu s.$	
EXTTS#	I HVCMOS	External Thermal Sensor Input: This signal may connect to a precision thermal sensor located on or near the DIMMs. If the system temperature reaches a dangerously high value, then this signal can be used to trigger the start of system thermal management. This signal is activated when an increase in temperature causes a voltage to cross some threshold in the sensor.	
EXP_SLR	I CMOS	PCI Express Static Lane Reversal: MCH's PCI Express lane numbers are reversed.	
		0 MCH's PCI Express lane numbers are reversed1 Normal operation	
ICH_SYNC#	O HVCMOS	ICH Sync: This signal is connected to the MCH_SYNCH# signal on the ICH7.	
XORTEST	I/O GTL+	XOR Test: This signal is used for Bed of Nails testing by OEMs to execute XOR Chain test.	
ALLZTEST	I/O GTL+	All Z Test: This signal is used for Bed of Nails testing by OEMs to execute ALL Z test.	

2.7 Direct Media Interface (DMI)

EDS Signal Name	Туре	Description
DMI_RXP[3:0] DMI_RXN[3:0]	I DMI	Direct Media Interface: Receive differential pair (Rx)
DMI_TXP[3:0] DMI_TXN[3:0]	O DMI	Direct Media Interface: Transmit differential pair (Tx)

2.8 Power, Ground

Name	Voltage	Description	
VCC	1.5 V	Core Power	
VTT	1.2 V	Processor System Bus Termination Power	
VCC_EXP	1.5 V	PCI Express and DMI Power	
VCCSM	1.8 V	System Memory Power	
VCCA_3GBG	2.5 V	PCI Express and DMI Analog Bandgap	
VCC2	2.5 V	2.5 V CMOS Power	
VCCA_EXPPLL	1.5 V	PCI Express PLL Analog Power	
VCCA_HPLL	1.5 V	Host PLL Analog Power	
VCCA_SMPLL	1.5 V	System Memory PLL Analog Power	
VSS	0 V	Ground	

2.9 Reset States and Pull-up/Pull-downs

This section describes the expected states of the MCH I/O buffers during and immediately after the assertion of RSTIN#. This table only refers to the contributions on the interface from the MCH and does NOT reflect any external influence (such as external pull-up/pull-down resistors or external drivers).

DRIVE:	Strong drive (to normal value supplied by core logic if not otherwise stated)
TERM:	Normal termination devices are turned on
LV:	Low voltage
HV:	High voltage
IN:	Input buffer enabled
TRI:	Tri-state
PU:	Weak internal pull-up: 7.2 K Ω - 11.1 K Ω , unless otherwise specified
PD:	Weak internal pull-down: 600 Ω - 880 Ω unless otherwise specified
CMCT:	Common Mode Center Tapped. Differential signals are weakly driven to the common mode central voltage.

Interface	Signal Name	I/O	State During RSTIN# Assertion	State After RSTIN# Deassertion	Pull-up/ Pull-down
HOST	HCPURST#	0	DRIVE LV	TERM HV after approximately 1ms	
	HADSTB[1:0]#	I/O	TERM HV	TERM HV	
	HA[35:3]#	I/O	TERM HV STRAP	POC	
	HD[63:0]#	I/O	TERM HV	TERM HV	
	HDSTBP[3:0]#	I/O	TERM HV	TERM HV	
	HDSTBN[3:0]#	I/O	TERM HV	TERM HV	
	HDINV[3:0]#	I/O	TERM HV	TERM HV	
	HADS#	I/O	TERM HV	TERM HV	
	HBNR#	I/O	TERM HV	TERM HV	
	HBPRI#	0	TERM HV	TERM HV	
	HDBSY#	I/O	TERM HV	TERM HV	
	HDEFER#	0	TERM HV	TERM HV	
	HDRDY#	I/O	TERM HV	TERM HV	
	HEDRDY#	0	TERM HV	TERM HV	
	HHIT#	I/O	TERM HV	TERM HV	
	HHITM#	I/O	TERM HV	TERM HV	
	HLOCK#	I/O	TERM HV	TERM HV	
	HREQ[4:0]#	I/O	TERM HV	TERM HV	
	HTRDY#	0	TERM HV	TERM HV	
	HRS[2:0]#	0	TERM HV	TERM HV	
	HBREQ0#	0	TERM HV	TERM HV	
	HPCREQ#	I	TERM HV	TERM HV	
	HDVREF	I	IN	IN	
	HRCOMP	I/O	TRI	TRI after RCOMP	RCOMP
	HSWING	I	IN	IN	
	HSCOMP	I/O	TRI	TRI	
	HACCVREF	I	IN	IN	

STRAP: Strap input sampled on the asserting edge of PWROK.

Interface	Signal Name	I/O	State During RSTIN# Assertion	State After RSTIN# Deassertion	Pull-up/ Pull-down
SYSTEM MEMORY (Channel A)	SCLK_A[5:0]	0	TRI	TRI	
	SCLK_A[5:0]#	0	TRI	TRI	
	SCS_A[3:0]#	0	TRI	TRI	
	SMA_A[13:0]	0	TRI	TRI	
	SBS_A[2:0]	0	TRI	TRI	
	SRAS_A#	0	TRI	TRI	
	SCAS_A#	0	TRI	TRI	
	SWE_A#	0	TRI	TRI	
	SDQ_A[63:0]	I/O	TRI	TRI	
	SCB_A[7:0]	I/O	TRI	TRI	
	SDM_A[7:0]	0	TRI	TRI	
	SDQS_A[8:0]	I/O	TRI	TRI	
	SDQS_A[8:0]#	I/O	TRI	TRI	
	SCKE_A[3:0]	0	LV	LV	
	SODT_A[3:0]	0	LV	LV	
SYSTEM	SCLK_B[5:0]	0	TRI	TRI	
MEMORY (Channel B)	SCLK_B[5:0]#	0	TRI	TRI	
、 <i>,</i>	SCS_B[3:0]#	0	TRI	TRI	
	SMA_B[13:0]	0	TRI	TRI	
	SBS_B[2:0]	0	TRI	TRI	
	SRAS_B#	0	TRI	TRI	
	SCAS_B#	0	TRI	TRI	
	SWE_B#	0	TRI	TRI	
	SDQ_B[63:0]	I/O	TRI	TRI	
	SCB_B[7:0]	I/O	TRI	TRI	
	SDM_B[7:0]	0	TRI	TRI	
	SDQS_B[8:0]	I/O	TRI	TRI	
	SDQS_B[8:0]#	I/O	TRI	TRI	
-	SCKE_B[3:0]	0	LV	LV	
	SODT_B[3:0]	0	LV	LV	
SYSTEM	SRCOMP0	I/O	TRI	TRI after RCOMP	
MEMORY (Misc.)	SRCOMP1	I/O	TRI	TRI after RCOMP	
· · · /	SVREF[1:0]	I	IN	IN	
	SOCOMP[1:0]	I/O	TRI	TRI	External 40 Ω resistor to ground

Interface	Signal Name	I/O	State During RSTIN# Assertion	State After RSTIN# Deassertion	Pull-up/ Pull-down
PCI	EXP_RXN[7:0]	I	СМСТ	CMCT	
EXPRESS	EXP_RXP[7:0]	I	СМСТ	CMCT	
	EXP_TXN[7:0]	0	CMCT 1.0V	CMCT 1.0V	
	EXP_TXP[7:0]	0	CMCT 1.0V	CMCT 1.0V	
	EXP_COMPO	0	TRI	TRI	
	EXP_COMPI	I	TRI	TRI	
DMI	DMI_RXN[3:0]	I	СМСТ	CMCT	
	DMI_RXP[3:0]	I	СМСТ	CMCT	
	DMI_TXN[3:0]	0	CMCT 1.0V	CMCT 1.0V	
	DMI_TXP[3:0]	0	CMCT 1.0V	CMCT 1.0V	
CLOCK	HCLKN	I	IN	IN	
	HCLKP	I	IN	IN	
	GCLKN	I	IN	IN	
	GCLKP	I	IN	IN	
	DREFCLKN	I	IN	IN	
	DREFCLKP	I	IN	IN	
MISC.	RSTIN#	I	IN	IN	
	PWROK	I	HV	HV	
	ICH_SYNC#	0	PU	PU	INT 10 KΩ PU
- - - - - -	EXTTS#	I	IN	IN	
	BSEL[2:0]	I/O	TRI STRAP	TRI	
	EXP_SLR	I/O	TERM HV STRAP	TERM HV	
	XORTEST	I/O	TERM HV STRAP	TERM HV	
	ALLZTEST	I/O	TERM HV STRAP	TERM HV	

§

intel. 3 MCH Register Description

The MCH contains two sets of software accessible registers, accessed via the Host CPU I/O address space: Control registers and internal configuration registers.

- Control registers are I/O mapped into the CPU I/O space, which control access to PCI and PCI Express configuration space (see Section 3.5).
- Internal configuration registers residing within the MCH are partitioned into two logical device register sets ("logical" since they reside within a single physical device). The first register set is dedicated to Host Bridge functionality (i.e. DRAM configuration, other chipset operating parameters and optional features). The second register block is dedicated to Host-to-PCI Express Bridge functions (controls PCI Express interface configurations and operating parameters).

The MCH internal registers (I/O Mapped, Configuration and PCI Express Extended Configuration registers) are accessible by the processor. The registers that reside within the lower 256 bytes of each device can be accessed as Byte, Word (16-bit), or DWord (32-bit) quantities, with the exception of CONFIG_ADDRESS, which can only be accessed as a DWord. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field). Registers which reside in bytes 256 through 4095 of each device may only be accessed using memory-mapped transactions in DWord (32-bit) quantities.

Some of the MCH registers described in this section contain reserved bits. These bits are labeled "Reserved". Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note the software does not need to perform read, merge, and write operation for the configuration address register.

In addition to reserved bits within a register, the MCH contains address locations in the configuration space of the Host Bridge entity that are marked either "Reserved" or "Intel Reserved". The MCH responds to accesses to "Reserved" address locations by completing the host cycle. When a "Reserved" register location is read, a zero value is returned. ("Reserved" registers can be 8-, 16-, or 32-bits in size). Writes to "Reserved" registers have no effect on the MCH. Registers that are marked as "Intel Reserved" must not be modified by system software. Writes to "Intel Reserved" registers may cause system failure. Reads from "Intel Reserved" registers may return a non-zero value.

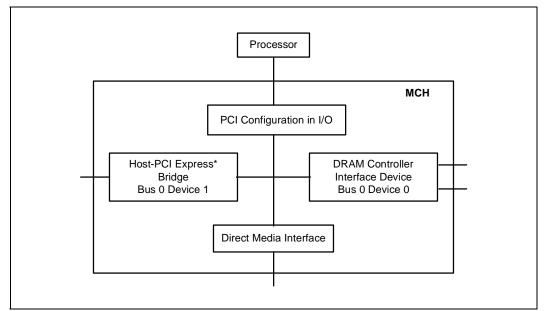
Upon a Full Reset, the MCH sets its entire set of internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionality feature set required to successfully bringing up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BIOS) to properly determine the DRAM configurations, operating parameters and optional system features that are applicable, and to program the MCH registers accordingly.

3.1 Register Terminology

The following table shows the register-related terminology that is used.

ltem	Description			
RO	Read Only bit(s). Writes to these bits have no effect.			
RO/S	Read Only / Sticky. Writes to these bits have no effect. These are status bits only. Bits are not returned to their default values by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits, a cold reset is "Power Good Reset" as defined in the PCI Express specification).			
RS/WC	Read Set / Write Clear bit(s). These bits are set to '1' when read and then will continue to remain set until written. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect.			
R/W	Read / Write bit(s). These bits can be read and written.			
R/WC	Read / Write Clear bit(s). These bits can be read. Internal events may set this bit. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect.			
R/WC/S	Read / Write Clear / Sticky bit(s). These bits can be read. Internal events may set this bit. A write of '1' clears (sets to '0') the corresponding bit(s) and a write of '0' has no effect. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a cold reset is "Power Good Reset" as defined in the <i>PCI Express</i> <i>Specification</i>).			
R/W/L	Read / Write / Lockable bit(s). These bits can be read and written. Additionally, there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).			
R/W/S	Read / Write / Sticky bit(s). These bits can be read and written. Bits are not cleared by "warm" reset, but will be reset with a cold/complete reset (for PCI Express related bits a cold reset is "Power Good Reset" as defined in the <i>PCI Express Specification</i>).			
R/WSC	Read / Write Self Clear bit(s). These bits can be read and written. When the bit is '1', hardware may clear the bit to '0' based upon internal events, possibly sooner than any subsequent read could retrieve a '1'.			
R/WSC/L	Read / Write Self Clear / Lockable bit(s). These bits can be read and written. When the bit is '1', hardware may clear the bit to '0' based upon internal events, possibly sooner than any subsequent read could retrieve a '1'. Additionally there is a bit (which may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit field becomes Read Only).			
R/WO	Write Once bit(s). Once written, bits with this attribute become Read Only. These bits can only be cleared by a Reset.			
W	Write Only. Whose bits may be written, but will always-return zeros when read. They are used for write side effects. Any data written to these registers cannot be retrieved.			

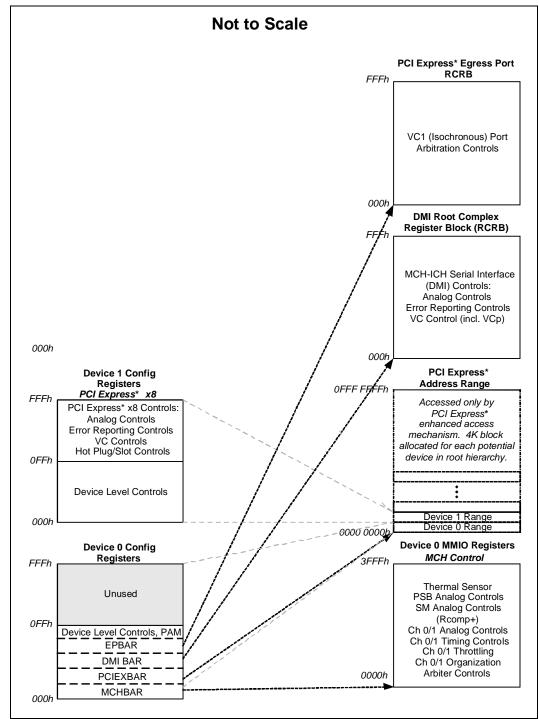
3.2 Platform Configuration


In platforms that support DMI (such as this MCH) the configuration structure is significantly different from previous hub architectures. The DMI physically connects the MCH and the ICH7; so, from a configuration standpoint, the DMI is logically PCI bus 0. As a result, all devices internal to the MCH and the ICH7 appear to be on PCI bus 0.

Note: The ICH7 internal LAN controller does not appear on bus 0; it appears on the external PCI bus and this number is configurable.

The system's primary PCI expansion bus is physically attached to the ICH7 and, from a configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge; therefore, it has a programmable PCI Bus number. The PCI Express x8 link appears to system software to be a real PCI bus behind a PCI-to-PCI bridge that is a device resident on PCI bus 0.

Note: A physical PCI bus 0 does not exist; DMI and the internal devices in the MCH and ICH7 logically constitute PCI Bus 0 to configuration software. This is shown in Section 3-1.


Figure 3-1. Conceptual Intel® E7230 Chipset Platform PCI Configuration Diagram

The MCH contains two PCI devices within a single physical component. The configuration registers for the two devices are mapped as devices residing on PCI bus 0.

- **Device 0:** Host Bridge/DRAM Controller. Logically this appears as a PCI device residing on PCI bus 0. Device 0 contains the standard PCI header registers, PCI Express base address register, DRAM control (including thermal/throttling control), and configuration for the DMI and other MCH specific registers.
- **Device 1:** Host-PCI Express Bridge. Logically this appears as a "virtual" PCI-to-PCI bridge residing on PCI bus 0 and is compatible with *PCI Express Specification* Rev 1.0a. Device 1 contains the standard PCI-to-PCI bridge registers and the standard PCI Express/PCI configuration registers (including the PCI Express memory address mapping). It also contains Isochronous and Virtual Channel controls in the PCI Express extended configuration space.

NOTES:

- 1. Very high level representation. Many details omitted.
- 2. Only Device 1 utilizes PCI Express extended configuration space.
- 3. Device 0 utilizes only standard PCI configuration space.
- 4. Hex numbers represent address range size and not actual locations.

3.3 Configuration Mechanism

The processor is the originator of configuration cycles so the FSB is the only interface in the platform where these mechanisms are used. The MCH translates transactions received through both configuration mechanisms to the same format.

3.3.1 Standard PCI Configuration Mechanism

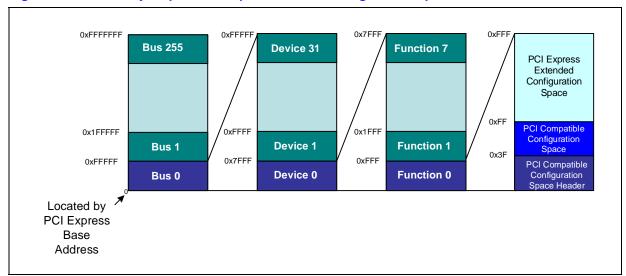
The following is the mechanism for translating processor I/O bus cycles to configuration cycles.

The PCI Specification defines a slot based "configuration space" that allows each device to contain up to 8 functions with each function containing up to 256 8-bit configuration registers. The PCI specification defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration Write. Memory and I/O spaces are supported directly by the CPU. Configuration space is supported by a mapping mechanism implemented within the MCH.

The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at I/O address 0CF8h through 0CFBh) and the CONFIG_DATA Register (at I/O address 0CFCh through 0CFFh). To reference a configuration register a DWord I/O write cycle is used to place a value into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the device, and a specific configuration register of the device function being accessed. CONFIG_ADDRESS[31] must be 1 to enable a configuration cycle. CONFIG_DATA then becomes a window into the four bytes of configuration space specified by the contents of CONFIG_ADDRESS. Any read or write to CONFIG_DATA will result in the MCH translating the CONFIG_ADDRESS into the appropriate configuration cycle.

The MCH is responsible for translating and routing the CPU's I/O accesses to the CONFIG_ADDRESS and CONFIG_DATA registers to internal MCH configuration registers, DMI or PCI Express.

3.3.2 PCI Express Enhanced Configuration Mechanism


PCI Express extends the configuration space to 4096 bytes per device/function as compared to 256 bytes allowed by PCI Specification Revision 2.3. PCI Express configuration space is divided into a PCI 2.3 compatible region, which consists of the first 256 B of a logical device's configuration space and a PCI Express extended region, which consists of the remaining configuration space.

The PCI compatible region can be accessed using either the Standard PCI Configuration Mechanism or using the PCI Express Enhanced Configuration Mechanism described in this section. The extended configuration registers may only be accessed using the PCI Express enhanced configuration access mechanism. To maintain compatibility with PCI configuration addressing mechanisms, system software must access the extended configuration space using 32-bit operations (32-bit aligned) only. These 32-bit operations include byte enables allowing only appropriate bytes within the Dword to be accessed. Locked transactions to the PCI Express memory mapped configuration address space are not supported. All changes made using either access mechanism are equivalent.

The PCI Express Enhanced Configuration Mechanism utilizes a flat memory-mapped address space to access device configuration registers. This address space is reported by the system firmware to the operating system. There is a register, PCIEXBAR, that defines the base address for the 256 MB block of addresses below top of addressable memory (currently 8 GB) for the configuration space associated with all buses, devices and functions that are potentially a part of the PCI Express root complex hierarchy. PCIEXBAR register has controls to limit the size of this

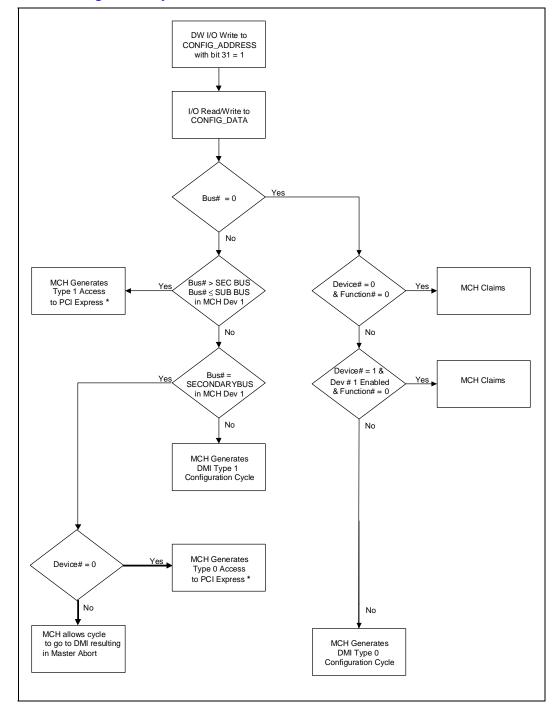
reserved memory mapped space. 256 MB is the amount of address space required to reserve space for every bus, device, and function that could possibly exist. Options for 128 MB and 64 MB exist in order to free up those addresses for other uses. In these cases the number of buses and all of their associated devices and functions are limited to 128 or 64 buses respectively.

The PCI Express Configuration Transaction Header includes an additional 4 bits (ExtendedRegisterAddress[3:0]) between the Function Number and Register Address fields to provide indexing into the 4 KB of configuration space allocated to each potential device. For PCI Compatible Configuration Requests, the Extended Register Address field must be all zeros.

Figure 3-3. Memory Map to PCI Express Device Configuration Space

As with PCI devices, each device is selected based on decoded address information that is provided as a part of the address portion of Configuration Request packets. A PCI Express device will decode all address information fields (bus, device, function, and extended address numbers) to provide access to the correct register.

To access this space (steps 1, 2 and 3 are done only once by BIOS),


- 1. Use the PCI compatible configuration mechanism to enable the PCI Express enhanced configuration mechanism by writing 1 to bit 0 of the PCIEXBAR register.
- 2. Use the PCI compatible configuration mechanism to write an appropriate PCI Express base address into the PCIEXBAR register.
- 3. Calculate the host address of the register you wish to set using (PCI Express base + (bus number * 1 MB) + (device number * 32 KB) + (function number * 4 KB) + (1 B * offset within the function) = host address).
- 4. Use a memory write or memory read cycle to the calculated host address to write or read that register.

3.4 Routing Configuration Accesses

The MCH supports two PCI related interfaces: DMI and PCI Express. The MCH is responsible for routing PCI and PCI Express configuration cycles to the appropriate device that is an integrated part of the MCH or to one of these two interfaces. Configuration cycles to the ICH7 internal

devices and Primary PCI (including downstream devices) are routed to the ICH7 via DMI. Configuration cycles to both the PCI compatibility configuration space and the PCI Express extended configuration space are routed to the PCI Express port device or associated link.

Figure 3-4. MCH Configuration Cycle Flow chart

3.4.1 Internal Device Configuration Accesses

The MCH decodes the Bus Number (bits 23:16) and the Device Number fields of the CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0 the configuration cycle is targeting a PCI Bus #0 device.

If the targeted PCI Bus #0 device exists in the MCH and is not disabled, the configuration cycle is claimed by the appropriate device.

3.4.2 Bridge Related Configuration Accesses

Configuration accesses on PCI Express or DMI are PCI Express Configuration TLPs (Transaction Layer Packets):

Bus Number [7:0] is Header Byte 8 [7:0] Device Number [4:0] is Header Byte 9 [7:3] Function Number [2:0] is Header Byte 9 [2:0]

And special fields for this type of TLP:

Extended Register Number [3:0] is Header Byte 10 [3:0] Register Number [5:0] is Header Byte 11 [7:2]

See the PCI Express specification for more information on both the PCI 2.3 compatible and PCI Express Enhanced Configuration Mechanism and transaction rules.

3.4.2.1 PCI Express Configuration Accesses

When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express Enhanced Configuration access matches the Device #1 Secondary Bus Number, a PCI Express Type 0 Configuration TLP is generated on the PCI Express link targeting the device directly on the opposite side of the link. This should be Device #0 on the bus number assigned to the PCI Express link (likely Bus #1).

The device on other side of link must be Device #0. The MCH will Master Abort any Type 0 Configuration access to a non-zero Device number. If there is to be more than one device on that side of the link there must be a bridge implemented in the downstream device.

When the Bus Number of a type 1 Standard PCI Configuration cycle or PCI Express Enhanced Configuration access is within the claimed range (between the upper bound of the bridge device's Subordinate Bus Number register and the lower bound of the bridge device's Secondary Bus Number register) but does not match the Device #1 Secondary Bus Number, a PCI Express Type 1 Configuration TLP is generated on the secondary side of the PCI Express link.

PCI Express Configuration Writes:

- Internally, the host interface unit translates writes to PCI Express extended configuration space to configuration writes on the backbone.
- Writes to extended space are posted on the FSB, but non-posted on the PCI Express or DMI (i.e. translated to configuration writes)

3.4.2.2 DMI Configuration Accesses

Accesses to disabled MCH internal devices, bus numbers not claimed by the Host-PCI Express bridge, or PCI Bus #0 devices not part of the MCH (#2 through #31) will be subtractively decoded to the ICH7 and consequently be forwarded over the DMI via a PCI Express configuration TLP.

If the Bus Number is zero, the MCH will generate a Type 0 Configuration Cycle TLP on DMI. If the Bus Number is non-zero, and falls outside the range claimed by the Host-PCI Express bridge, the MCH will generate a Type 1 Configuration Cycle TLP on DMI.

The ICH7 routes configurations accesses in a manner similar to the MCH. The ICH7 decodes the configuration TLP and generates a corresponding configuration access. Accesses targeting a device on PCI Bus #0 may be claimed by an internal device. The ICH7 compares the non-zero Bus Number with the Secondary Bus Number and Subordinate Bus Number registers of its PCI-to-PCI bridges to determine if the configuration access is meant for Primary PCI, one of the ICH7's devices, the DMI, or some other downstream PCI bus or PCI Express link.

Configuration accesses that are forwarded to the ICH7, but remain unclaimed by any device or bridge will result in a master abort.

3.5 I/O Mapped Registers

The MCH contains two registers that reside in the CPU I/O address space: the Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data (CONFIG_DATA) Register. The Configuration Address Register enables/disables the configuration space and determines what portion of configuration space is visible through the Configuration Data window.

3.5.1 CONFIG_ADDRESS—Configuration Address Register

I/O Address:	0CF8h-0CFBh Accessed as a DW
Default Value:	00000000h
Access:	R/W
Size:	32 bits

CONFIG_ADDRESS is a 32-bit register that can be accessed only as a DWord. A Byte or Word reference will "pass through" the Configuration Address Register and DMI onto the Primary PCI bus as an I/O cycle. The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent configuration access is intended.

Bit	Access & Default	Description
31	R/W	Configuration Enable (CFGE)
	0b	1 = Enable. Accesses to PCI configuration space are enabled.2 = Disable.
30:24		Reserved

Bit	Access & Default	Description	
23:16	R/W	Bus Number	
	00h	If the Bus Number is programmed to 00h the target of the Configuration Cycle is a PCI Bus #0 agent. If this is the case and the MCH is not the target (i.e. the device number is \geq 2), then a DMI Type 0 Configuration Cycle is generated.	
		If the Bus Number is non-zero, and does not fall within the ranges enumerated by device 1's SECONDARY BUS NUMBER or SUBORDINATE BUS NUMBER Register, then a DMI Type 1 Configuration Cycle is generated.	
		If the Bus Number is non-zero and matches the value programmed into the SECONDARY BUS NUMBER Register of device 1, a Type 0 PCI configuration cycle will be generated on PCI Express.	
		If the Bus Number is non-zero, greater than the value in the SECONDARY BUS NUMBER register of device 1 and less than or equal to the value programmed into the SUBORDINATE BUS NUMBER Register of device 1 a Type 1 PCI configuration cycle will be generated on PCI Express.	
		This field is mapped to byte 8 [7:0] of the request header format during PCI Express Configuration cycles and A[23:16] during the DMI Type 1 configuration cycles.	
15:11	R/W	Device Number	
	00h	This field selects one agent on the PCI bus selected by the Bus Number. When the Bus Number field is "00" the MCH decodes the Device Number field. The MCH is always Device Number 0 for the Host bridge entity, Device Number 1 for the Host-PCI Express entity. Therefore, when the Bus Number =0 and the Device Number equals 0 or 1 the internal MCH devices are selected.	
		This field is mapped to byte 6 [7:3] of the request header format during PCI Express Configuration cycles and A [15:11] during the DMI configuration cycles.	
10:8	R/W	Function Number	
	000b	This field allows the configuration registers of a particular function in a multi-function device to be accessed. The MCH ignores configuration cycles to its internal devices if the function number is not equal to 0.	
		This field is mapped to byte 6 [2:0] of the request header format during PCI Express Configuration cycles and A[10:8] during the DMI configuration cycles.	
7:2	R/W	Register Number	
	00h	This field selects one register within a particular Bus, Device, and Function as specified by the other fields in the Configuration Address Register.	
		This field is mapped to byte 7 [7:2] of the request header format during PCI Express Configuration cycles and A[7:2] during the DMI Configuration cycles.	
1:0		Reserved	

3.5.2 **CONFIG_DATA**—Configuration Data Register

I/O Address:	0CFCh-0CFFh
Default Value:	00000000h
Access:	R/W
Size:	32 bits

CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of configuration space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS.

Bit	Access & Default	Description
31:0	R/W 0000 0000 h	Configuration Data Window (CDW) If bit 31 of CONFIG_ADDRESS is 1, any I/O access to the CONFIG_DATA register will produce a configuration transaction using the contents of CONFIG_ADDRESS to determine the bus, device, function, and offset of the register to be accessed.

§

Host Bridge Registers (Device 0, Function 0)

This chapter contains the host bridge registers that are in Device 0 (D0), Function 0 (F0). The DRAM Controller registers are in D0:F0. Table 4-1 is an address map for D0:F0; registers are listed by address offset in ascending order. Section 4.1 provides detailed bit descriptions of the registers listed in Table 4-1. All registers that are defined in the PCI 2.3 specification, but are not necessary or implemented in this component are not included in this document.

Warning: Address locations that are not listed are considered Intel Reserved registers locations. Reads to Reserved address locations may return non-zero values. Writes to reserved locations may cause system failures.

Address Offset	Register Symbol	Register Name	Default Value	Access
00-01h	VID	Vendor Identification	8086h	RO
02-03h	DID	Device Identification	2778h	RO
04-05h	PCICMD	PCI Command	0006h	RO, R/W
06-07h	PCISTS	PCI Status	0090h	RO, R/WC
08h	RID	Revision Identification	See Section 4.1.5	RO
09-0Bh	CC	Class Code	060000h	RO
0Ch	_	Reserved	—	_
0Dh	MLT	Master Latency Timer	00h	RO
0Eh	HDR	Header Type	00h	RO
0F-2Bh	_	Reserved	—	_
2C-2Dh	SVID	Subsystem Vendor Identification	0000h	R/WO
2E-2Fh	SID	Subsystem Identification	0000h	R/WO
30-33h	_	Reserved	—	_
34h	CAPPTR	Capabilities Pointer	E0h	RO
35-3Fh	_	Reserved	—	_
40-43h	EPBAR	Egress Port Base Address	00000000h	RO
44-47h	MCHBAR	MCH Memory Mapped Register Range Base Address	00000000h	R/W
48-4Bh	PCIEXBAR	PCI Express Register Range Base Address	E0000000h	R/W
4C-4Fh	DMIBAR	Root Complex Register Range Base Address	00000000h	R/W
50-53h	_	Reserved	—	_
54-57h	DEVEN	Device Enable	0000003h	R/W

Table 4-1. Host Bridge Register Address Map (D0:F0) (Sheet 1 of 2)

Address Offset	Register Symbol	Register Name	Default Value	Access
58–5Bh	DEAP	DRAM Error Address	0000000h	RO/S
5Ch	DERRSYN	DRAM Error Syndrome	00h	RO/S
5Dh	DERRDST	DRAM Error Destination	00h	RO/S
5E-8Fh	_	Reserved	_	_
90h	PAM0	Programmable Attribute Map 0	00h	R/W
91h	PAM1	Programmable Attribute Map 1	00h	R/W
92h	PAM2	Programmable Attribute Map 2	00h	R/W
93h	PAM3	Programmable Attribute Map 3	00h	R/W
94h	PAM4	Programmable Attribute Map 4	00h	R/W
95h	PAM5	Programmable Attribute Map 5	00h	R/W
96h	PAM6	Programmable Attribute Map 6	00h	R/W
97h	LAC	Legacy Access Control	00h	R/W
98-99h	REMAPBASE	Remap Base Address Register	03FFh	RW
9A-9Bh	REMAPLIMIT	Remap Limit Address Register	0000h	RW
9Ch	TOLUD	Top of Low Usable DRAM	08h	R/W
9Dh	SMRAM	System Management RAM Control	02h	RO, R/W/L
9Eh	ESMRAMC	Extended System Management RAM Control	38h	RO, R/W/L
9Fh	_	Reserved	_	_
A0-A1h	ТОМ	Top of Memory	0001h	RO, R/W
A2-C7h	_	Reserved	_	_
C8-C9h	ERRSTS	Error Status	0000h	R/WC/S, RC
CA-CBh	ERRCMD	Error Command	0000h	R/W
CC-CDh	SMICMD	SMI Command	0000h	RO; R/W
CE-CFh	SCICMD	SCI Command	0000h	RO; R/W
DA-DBh	—	Reserved	_	_
DC-DFh	SKPD	Scratchpad Data	0000000h	R/W
E0-E8h	CAPID0	Capability Identifier	00000000000109000 9h	RO
FCh	EDEAP	Extended DRAM Error Address Pointer	00h	RO/S

Table 4-1. Host Bridge Register Address Map (D0:F0) (Sheet 2 of 2)

4.1 **Configuration Register Details (D0:F0)**

4.1.1 VID—Vendor Identification (D0:F0)

PCI Device:	0
Address Offset:	00-01h
Default Value:	8086h
Access:	RO
Size:	16 bits

This register, combined with the Device Identification register, uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO	Vendor Identification Number (VID):
	8086h	PCI standard identification for Intel.

4.1.2 DID—Device Identification (D0:F0)

0
02-03h
2778h
RO
16 bits

This register, combined with the Vendor Identification register, uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO	Device Identification Number (DID):
	2778h	Identifier assigned to the MCH core/primary PCI device.

4.1.3 PCICMD—PCI Command (D0:F0)

PCI Device:	0
Address Offset:	04-05h
Default Value:	0006h
Access:	RO, R/W
Size:	16 bits

Since MCH Device 0 does not physically reside on Primary PCI bus, many of the bits are not implemented.

Bit	Access & Default	Description	
15:10		Reserved	
9	RO	Fast Back-to-Back Enable (FB2B):	
	0 b	Not implemented. Hardwired to 0. This bit controls whether or not the master can do fast back-to-back write. Since device 0 is strictly a target, this bit is not implemented.	

Bit	Access & Default	Description	
8	R/W	SERR Enable (SERRE):	
	0 b	This bit is a global enable bit for Device 0 SERR messaging. The MCH does not have an SERR signal. The MCH communicates the SERR condition by sending an SERR message over DMI to the ICH7.	
		1:• Enable. The MCH is enabled to generate SERR messages over DMI for specific Device 0 error conditions that are individually enabled in the ERRCMD register. The error status is reported in the ERRSTS, and PCISTS registers.	
		 Disable. The SERR message is not generated by the MCH for Device 0. NOTE: This bit only controls SERR messaging for the Device 0. Device 1 has its own SERRE bits to control error reporting for error conditions occurring in that device. The control bits are used in a logical OR manner to enable the SERR DMI message mechanism. 	
7	RO	Address/Data Stepping Enable (ADSTEP):	
	0 b	Not implemented. Hardwired to 0. Address/data stepping is not implemented in the MCH.	
6	RO	Parity Error Enable (PERRE):	
	0 b	Not implemented. Hardwired to 0. PERR# is not implemented by the MCH.	
5	RO	VGA Palette Snoop Enable (VGASNOOP):	
	0 b	Not implemented. Hardwired to 0. Writes to this bit position have no effect.	
4	RO	Memory Write and Invalidate Enable (MWIE):	
	0 b	Not implemented. Hardwired to 0. The MCH will never issue memory write and invalidate commands.	
3		Reserved	
2	RO	Bus Master Enable (BME):	
	1 b	Hardwired to 1. The MCH is always enabled as a master.	
1	RO	Memory Access Enable (MAE):	
	1 b	Hardwired to 1. The MCH always allows access to main memory.	
0	RO	I/O Access Enable (IOAE):	
	0 b	Not implemented. Hardwired to 0.	

4.1.4 PCISTS—PCI Status (D0:F0)

PCI Device:	0
Address Offset:	06-07h
Default Value:	0090h
Access:	RO, R/WC
Size:	16 bits

This status register reports the occurrence of error events on Device 0's PCI interface. Since the MCH Device 0 does not physically reside on Primary PCI, many of the bits are not implemented.

Bit	Access & Default	Description
15	RO	Detected Parity Error (DPE):
	0 b	Not implemented. Hardwired to 0.

Bit	Access & Default	Description
14	R/WC	Signaled System Error (SSE):
	0 b	Software clears this bit by writing a 1 to it.
		0:• MCH Device 0 did Not generate a SERR message over DMI
		1:•MCH Device 0 generated a SERR message over DMI for any enabled Device 0 error condition. Device 0 error conditions are enabled in the PCICMD, and ERRCMD registers. Device 0 error flags are read/reset from the PCISTS, or ERRSTS registers.
13	R/WC	Received Master Abort Status (RMAS):
	0 b	Software clears this bit by writing a 1 to it.
		1:• MCH generated a DMI request that received an Unsupported Request completion packet.
12	R/WC	Received Target Abort Status (RTAS):
	0 b	Software clears this bit by writing a 1 to it.
		1:• MCH generated a DMI request that receives a Completer Abort completion packet.
11	RO	Signaled Target Abort Status (STAS):
	0 b	Not implemented. Hardwired to 0. The MCH will not generate a Target Abort DMI completion packet or Special Cycle.
10:9	RO	DEVSEL Timing (DEVT):
	00 b	Hardwired to "00". Device 0 does not physically connect to Primary PCI. These bits are set to "00" (fast decode) so that optimum DEVSEL timing for Primary PCI is not limited by the MCH.
8	RO	Master Data Parity Error Detected (DPD):
	0 b	Not implemented. Hardwired to 0.
7	RO	Fast Back-to-Back (FB2B):
	1 b	Hardwired to 1. Device 0 does not physically connect to the Primary PCI. This bit is set to 1 (indicating fast back-to-back capability) so that the optimum setting for Primary PCI is not limited by the MCH.
6		Reserved
5	RO	66 MHz Capable:
	0 b	Hardwired to 0. This bit does not apply to PCI Express.
4	RO	Capability List (CLIST):
	1 b	This bit is hardwired to 1 to indicate to the configuration software that this device/ function implements a list of new capabilities. A list of new capabilities is accessed via the CAPPTR register (offset 34h). The CAPPTR register contains an offset pointing to the start address within configuration space of this device where the Capability standard register resides.
3:0		Reserved
	1	1

4.1.5 **RID**—Revision Identification (D0:F0)

PCI Device:	0
Address Offset:	08h
Default Value:	See description
Access:	RO
Size:	8 bits

This register contains the revision number of the MCH Device 0. These bits are read only and writes to this register have no effect.

Bit	Access & Default	Description	
7:0	RO	Revision Identification Number (RID):	
	00 h	This is an 8-bit value that indicates the revision identification number for the MCH Device 0. Refer to the Intel® E7230 Chipset Memory Controller Hub (MCH) Specification Update for the value of the Revision ID Register.	

4.1.6 CC—Class Code (D0:F0)

PCI Device:	0
Address Offset:	09-0Bh
Default Value:	060000h
Access:	RO
Size:	24 bits

This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface.

Bit	Access & Default	Description	
23:16	RO	Base Class Code (BCC):	
	06 h	This is an 8-bit value that indicates the base class code for the MCH.	
		06h:•Bridge device.	
15:8	RO	Sub-Class Code (SUBCC):	
	00 h	This is an 8-bit value that indicates the category of Bridge into which the MCH falls. 00h:•Host Bridge.	
7:0	RO	Programming Interface (PI):	
	00 h	This is an 8-bit value that indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.	

4.1.7 MLT—Master Latency Timer (D0:F0)

PCI Device:	0
Address Offset:	0Dh
Default Value:	00h
Access:	RO
Size:	8 bits

Device 0 in the MCH is not a PCI master. Therefore, this register is not implemented.

Ī	Bit	Access & Default	Description
	7:0		Reserved

4.1.8 HDR—Header Type (D0:F0)

PCI Device:	0
Address Offset:	0Eh
Default Value:	00h
Access:	RO
Size:	8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access & Default	Description
7:0	RO	PCI Header (HDR):
	00 h	This field always returns 0 to indicate that the MCH is a single function device with standard header layout. Reads and writes to this location have no effect.

4.1.9 SVID—Subsystem Vendor Identification (D0:F0)

PCI Device:	0
Address Offset:	2C-2Dh
Default Value:	0000h
Access:	R/WO
Size:	16 bits

This register is used to identify the vendor of the subsystem.

Bit	Access & Default	Description
15:0	R/WO	Subsystem Vendor ID (SUBVID):
	0000 h	This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

4.1.10 SID—Subsystem Identification (D0:F0)

PCI Device:	0
Address Offset:	2E-2Fh
Default Value:	0000h
Access:	R/WO
Size:	16 bits

This register is used to identify a particular subsystem.

Bit	Access & Default	Description	
15:0	R/WO	Subsystem ID (SUBID):	
	0000 h	This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.	

4.1.11 CAPPTR—Capabilities Pointer (D0:F0)

PCI Device:	0
Address Offset:	34h
Default Value:	E0h
Access:	RO
Size:	8 bits

The CAPPTR register provides the offset that is the pointer to the location of the first device capability in the capability list.

Bit	Access & Default	Description
7:0	RO	Pointer to the Offset of the First Capability ID Register Block:
	E0 h	In this case the first capability is the product-specific Capability Identifier (CAPID0).

4.1.12 EPBAR—Egress Port Base Address (D0:F0)

PCI Device:	0
Address Offset:	40-43h
Default Value:	0000000h
Access:	RO
Size:	32 bits

This is the base address for the Egress Port MMIO Configuration space. There is no physical memory within this 4 KB window that can be addressed. The 4 KB space reserved by this register does not alias to any PCI 2.3 compliant memory mapped space.

Note:	On reset,	this register is	disabled and	must be enabled	d by writing a	1 to EPBAREN.
-------	-----------	------------------	--------------	-----------------	----------------	---------------

Bit	Access & Default	Description	
31:12	R/W	Egress Port MMIO Base Address:	
	00000 h	This field corresponds to bits 31 to 12 of the base address Egress Port MMIO configuration space.	
		BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4 KB space is allocated within total addressable memory space of 8 GB.	
		System software uses this base address to program the MCH MMIO register set.	
11:1		Reserved	
0	R/W	EPBAR enable (EPBAREN):	
	0b	0:• EPBAR is disabled and does not claim any memory	
		1:• EPBAR memory mapped accesses are claimed and decoded appropriately	

4.1.13 MCHBAR—MCH Memory Mapped Register Range Base Address (D0:F0)

PCI Device:	0
Address Offset:	44-47h
Default Value:	0000000h
Access:	R/W
Size:	32 bits

This is the base address for the MCH Memory Mapped Configuration space. There is no physical memory within this 16 KB window that can be addressed. The 16 KB space reserved by this register does not alias to any PCI 2.3 compliant memory mapped space.

Note: On reset, this register is disabled and must be enabled by writing a 1 to MCHBAREN.

Bit	Access & Default	Description
31:14	R/W	MCH Memory Mapped Base Address:
	00000 h	This field corresponds to bits 31 to 14 of the base address MCH Memory Mapped configuration space.
		BIOS will program this register resulting in a base address for a 16 KB block of contiguous memory address space. This register ensures that a naturally aligned 16 KB space is allocated within total addressable memory space of 8 GB.
		System Software uses this base address to program the MCH Memory Mapped register set.
13:1		Reserved
0	R/W	MCHBAR Enable (MCHBAREN):
	0b	0: MCHBAR is disabled and does not claim any memory
		1: MCHBAR memory mapped accesses are claimed and decoded appropriately

4.1.14 PCIEXBAR—PCI Express Register Range Base Address (D0:F0)

PCI Device:	0
Address Offset:	48-4Bh
Default Value:	E000000h
Access:	R/W
Size:	32 bits

This is the base address for the PCI Express configuration space. This window of addresses contains the 4 KB of configuration space for each PCI Express device that can potentially be part of the PCI Express hierarchy associated with the MCH. There is not actual physical memory within this window of up to 256 MB that can be addressed. The actual length is determined by a field in this register. Each PCI Express hierarchy requires a PCI Express BASE register. The MCH supports one PCI Express hierarchy.

The region reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. For example MCHBAR reserves a 16 KB space outside of PCIEXBAR space. It cannot be overlaid on the space reserved by PCIEXBAR for device 0.

On reset, this register is disabled and must be enabled by writing a 1 to the enable field in this register. This base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register), above TOLUD and still within total 36 bit addressable memory space.

All other bits not decoded are read only 0. The PCI Express Base Address cannot be less than the maximum address written to the Top of physical memory register (TOLUD). Software must ensure that these ranges do not overlap with known ranges located above TOLUD.

Bit	Access & Default	Description
31:28	R/W	PCI Express Base Address:
	Eh	This field corresponds to bits 31 to 28 of the base address for PCI Express enhanced configuration space. BIOS will program this register resulting in a base address for a contiguous memory address space; size is defined by bits 2:1 of this register.
		This base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register) above TOLUD and still within total 36-bit addressable memory space. The address bits decoded depend on the length of the region defined by this register.
		The address used to access the PCI Express configuration space for a specific device can be determined as follows:
		PCI Express Base Address + Bus Number * 1 MB + Device Number * 32 KB + Function Number * 4 KB
		The address used to access the PCI Express configuration space for Device 1 in this component would be PCI Express Base Address + $0 * 1 \text{ MB} + 1 * 32 \text{ KB} + 0 * 4 \text{ KB} = PCI Express Base Address + 32 \text{ KB}. Remember that this address is the beginning of the 4 KB space that contains both the PCI compatible configuration space and the PCI Express extended configuration space.$
27	R/W 0b	128 MB Base Address Mask (128ADMSK): This bit is either part of the PCI Express Base Address (R/W) or part of the Address Mask (RO, read 0b), depending on the value of bits 2:1 in this register.
26	R/W 0b	64 MB Base Address Mask (64ADMSK): This bit is either part of the PCI Express Base Address (R/W) or part of the Address Mask (RO, read 0b), depending on the value of bits 2:1 in this register
25:3		Reserved

Bit	Access & Default	Description	
2:1	R/W	Length (LENGTH): This Field describes the length of this region	
		Enhanced Configuration Space Region/Buses Decoded	
		00: 256 MB (Buses 0-255). Bits 31:28 are decoded in the PCI Express Base Address Field	
		01: 128 MB (Buses 0-127). Bits 31:27 are decoded in the PCI Express Base Address Field.	
		 64 MB (Buses 0-63). Bits 31:26 are decoded in the PCI Express Base Address Field. 	
		11: Reserved	
0	R/W	PCIEXBAR Enable (PCIEXBAREN):	
	Oh	0: The PCIEXBAR register is disabled. Memory read and write transactions proceed as if there were no PCIEXBAR register. PCIEXBAR bits 31:26 are R/W with no functionality behind them.	
		1: The PCIEXBAR register is enabled. Memory read and write transactions whose address bits 31:26 match PCIEXBAR will be translated to configuration reads and writes within the MCH.	

4.1.15 DMIBAR—Root Complex Register Range Base Address (D0:F0)

PCI Device:	0
Address Offset:	4C-4Fh
Default Value:	0000000h
Access:	R/W
Size:	32 bits

This is the base address for the Root Complex configuration space. This window of addresses contains the Root Complex Register set for the PCI Express hierarchy associated with the MCH. There is no physical memory within this 4 KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space.

On reset, this register is disabled and must be enabled by writing a 1 to the DMIBAREN in this register.

Bit	Access & Default	Description
31:12	R/W	DMI Base Address:
	00000 h	This field corresponds to bits 31 to 12 of the base address DMI configuration space.
		BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4 KB space is allocated within total addressable memory space of 8 GB.
		System Software uses this base address to program the DMI register set.
11:1		Reserved
0	R/W	DMIBAR Enable (DMIBAREN):
	0b	0: DMIBAR is disabled and does not claim any memory
		1: DMIBAR memory mapped accesses are claimed and decoded appropriately

4.1.16 DEVEN—Device Enable (D0:F0)

PCI Device:	0
Address Offset:	54-57h
Default Value:	0000003h
Access:	R/W
Size:	32 bits

This register allows for enabling/disabling of PCI devices and functions that are within the MCH.

Bit	Access & Default	Description
31:2		Reserved
1	R/W 1 b	PCI Express Port (D1EN): 0: Bus 0 Device 1 Function 0 is disabled and hidden. 1: Bus 0 Device 1 Function 0 is enabled and visible.
0	RO 1 b	Host Bridge: Hardwired to 1. Bus 0 Device 0 Function 0 may not be disabled.

4.1.17 DEAP - DRAM Error Address Pointer (D0:F0)

0
58-5Bh
00000000h
RO/S;
32 bits

This register contains the address of detected DRAM ECC error(s).

Bit	Access & Default	Description
31:7	RO/S 0000000h	Error Address Pointer (EAP): This field is used to store the 128B (Two Cache Line) address of main memory for which an error (single bit or multi-bit error) has occurred. The address is captured after any address remapping through REMAPBASE/ REMAPLIMIT is applied, such that all physical system memory appears as a contiguous logical address block. It is valid to compare this address against C0DRB* and C1DRB* registers to determine which rank of memory failed.
		Note that the value of this bit field represents the address of the first single or the first multiple bit error occurrence after the error flag bits in the ERRSTS Register have been cleared by software. A multiple bit error will overwrite a single bit error. Once the error flag bits are set as a result of an error, this bit field is locked and doesn't change as a result of a new error. These bits are reset on PWROK.
6:1		Reserved
0	RO/S 0b	 Channel Indicator (CHI): This bit indicates which memory channel had the error. 0: Channel 0 1: Channel 1

4.1.18 DERRSYN - DRAM Error Syndrome (D0:F0)

PCI Device:	0
Address Offset:	5Ch
Default Value:	00h
Access:	RO/S;
Size:	8 bits

This register is used to report the ECC syndromes for each quadword of a 32B-aligned data quantity read from the DRAM array.

Bit	Access & Default	Description
7:0	RO/S	DRAM ECC Syndrome (DECCSYN): After a DRAM ECC error on any QWord of the data chunk resulting from a read command, hardware loads this field with a syndrome that describes the set of bits associated with the first QWord containing an error. Note that this field is locked from the time that it is loaded up to the time when the error flag is cleared by software. If the first error was a single bit, correctable error, then a subsequent multiple bit error on any of the QWords in this read transaction or any subsequent read transaction will cause the field to be re-recorded. When a multiple bit error is recorded, then the field is locked until the error flag is cleared by software. In all other cases, an error, which occurs after the first error, and before the error flag, has been cleared by software, will escape recording. These bits are reset on PWROK.

4.1.19 DERRDST - DRAM Error Destination (D0:F0)

PCI Device:	0
Address Offset:	5Dh
Default Value:	00h
Access:	RO/S;
Size:	8 bits

This register is used to report the destination of the data containing an ECC error whose address is recorded in DEAP.

Bit	Access & Default	Description
7:6		Reserved
5:0	RO/S	ECC Error Source Code (EESC): This field is updated concurrently with
	00h	DERRSYN.
		00h: Processor to memory reads 01h - 07h: Reserved
		01h - 07h: Reserved 08h - 09h: DMI VC0 initiated and targeting cycles/data
		0Ah - 0Bh: DMI VC0 initiated and targeting cycles/data
		0Ch - 0Fh: Reserved
		10h: PCI Express initiated and targeting cycles/data
		11h: Reserved
		12h: PCI Express initiated and targeting cycles/data
		13h: Reserved
		14h - 16h: PCI Express initiated and targeting cycles/data
		17h: Reserved
		18h - 3Eh: Reserved
		3Fh: Used for broadcast messages with data targeting multiple units. (e.g., EOI).
		These bits are reset on PWROK.

4.1.20 PAM0—Programmable Attribute Map 0 (D0:F0)

0
90h
00h
R/W
8 bits

This register controls the read, write, and shadowing attributes of the BIOS area from 0F0000h-0FFFFh

The MCH allows programmable memory attributes on 13 Legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) Registers are used to support these features. Cache ability of these areas is controlled via the MTRR registers in the P6 processor. Two bits are used to specify memory attributes for each memory segment. These bits apply to both host accesses and PCI initiator accesses to the PAM areas. These attributes are:

RE - Read Enable. When RE = 1, the CPU read accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when RE = 0, the host read accesses are directed to PRIMARY PCI.

WE - Write Enable. When WE = 1, the host write accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when WE = 0, the host write accesses are directed to PRIMARY PCI.

The RE and WE attributes permit a memory segment to be Read Only, Write Only, Read/Write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is Read Only.

Each PAM Register controls two regions, typically 16 KB in size.

Bit	Access & Default	Description	
7:6		Reserved	
5:4	R/W 00 b	 OF0000-OFFFFF Attribute (HIENABLE): This field controls the steering of read and write cycles that addresses the BIOS area from 0F0000 to 0FFFFF. O0: DRAM Disabled: All accesses are directed to the DMI. O1: Read Only: All reads are sent to DRAM. All writes are forwarded to the DMI. 10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM. 	
3:0		Reserved	

Warning: The MCH may hang if a PCI Express or DMI originated access to Read Disabled or Write Disabled PAM segments occur (due to a possible IWB to non-DRAM). For these reasons the following critical restriction is placed on the programming of the PAM regions:

At the time that a DMI or PCI Express accesses to the PAM region may occur, the targeted PAM segment must be programmed to be both readable and writeable.

4.1.21 PAM1—Programmable Attribute Map 1 (D0:F0)

PCI Device:	0
Address Offset:	91h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C0000h-0C7FFFh.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W 00 b	0C4000-0C7FFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C4000 to 0C7FFF. 00: DRAM Disabled: Accesses are directed to the DMI.
		01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI
		10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2		Reserved
1:0	R/W 00 b	0C0000-0C3FFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0C0000 to 0C3FFF.
	00.0	00: DRAM Disabled: Accesses are directed to the DMI.
		01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11: Normal DRAM Operation: All reads and writes are serviced by DRAM.

4.1.22 PAM2—Programmable Attribute Map 2 (D0:F0)

PCI Device:	0
Address Offset:	92h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0C8000h-0CFFFFh.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W	0CC000-0CFFFF Attribute (HIENABLE):
	00 b	00: DRAM Disabled: Accesses are directed to the DMI.
		 Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2		Reserved

Bit	Access & Default	Description
1:0	R/W	0C8000-0CBFFF Attribute (LOENABLE): This field controls the steering of read
	00 b	and write cycles that address the BIOS area from 0C8000 to 0CBFFF.
		00: DRAM Disabled: Accesses are directed to the DMI.
		 Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.
		11: Normal DRAM Operation: All reads and writes are serviced by DRAM.

4.1.23 PAM3—Programmable Attribute Map 3 (D0:F0)

0
93h
00h
R/W
8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D0000h-0D7FFFh.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W 00 b	0D4000-0D7FFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D4000 to 0D7FFF. 00: DRAM Disabled: Accesses are directed to the DMI.
		 01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI. 10: Write Only: All writes are center DDAM. Deade are centiced by DMI.
		10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.11: Normal DRAM Operation: All reads and writes are serviced by DRAM.
3:2		Reserved
1:0	R/W 00 b	0D0000-0D3FFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D0000 to 0D3FFF. 00: DRAM Disabled: Accesses are directed to the DMI.
		01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.11: Normal DRAM Operation: All reads and writes are serviced by DRAM.

4.1.24 PAM4—Programmable Attribute Map 4 (D0:F0)

PCI Device:	0
Address Offset:	94h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0D8000h-0DFFFFh.

Bit	Access & Default	Description	
7:6		Reserved	
5:4	R/W 00 b	 ODC000-ODFFFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0DC000 to 0DFFFF. 00: DRAM Disabled: Accesses are directed to the DMI. 01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI. 10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM. 	
3:2		Reserved	
1:0	R/W 00 b	 OD8000-ODBFFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0D8000 to 0DBFFF. O0: DRAM Disabled: Accesses are directed to the DMI. O1: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI. 10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM. 	

4.1.25 PAM5—Programmable Attribute Map 5 (D0:F0)

0
95h
00h
R/W
8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E0000h-0E7FFFh.

Bit	Access & Default	Description
7:6		Reserved
5:4	R/W 00 b	 0E4000-0E7FFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000 to 0E7FFF. 00: DRAM Disabled: Accesses are directed to the DMI. 01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI. 10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI. 11: Normal DRAM Operation: All reads and writes are serviced by DRAM.

Bit	Access & Default	Description
3:2		Reserved
1:0	R/W 00 b	 0E0000-0E3FFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000 to 0E3FFF. 00: DRAM Disabled: Accesses are directed to the DMI. 01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.
		 Write Only: All writes are sent to DRAM. Reads are serviced by DMI. Normal DRAM Operation: All reads and writes are serviced by DRAM.

4.1.26 PAM6—Programmable Attribute Map 6 (D0:F0)

PCI Device:	0
Address Offset:	96h
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the read, write, and shadowing attributes of the BIOS areas from 0E8000h-0EFFFFh.

Bit	Access & Default	Description		
7:6		Reserved		
5:4	R/W 00 b	0EC000-0EFFFF Attribute (HIENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E4000 to 0E7FFF. 00: DRAM Disabled: Accesses are directed to the DMI.		
		01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.		
		10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.		
		11: Normal DRAM Operation: All reads and writes are serviced by DRAM.		
3:2		Reserved		
1:0	R/W 00 b	0E8000-0EBFFF Attribute (LOENABLE): This field controls the steering of read and write cycles that address the BIOS area from 0E0000 to 0E3FFF.		
	00 5	00: DRAM Disabled: Accesses are directed to the DMI.		
		01: Read Only: All reads are serviced by DRAM. All writes are forwarded to the DMI.		
		10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.		
		11: Normal DRAM Operation: All reads and writes are serviced by DRAM.		

4.1.27 LAC—Legacy Access Control (D0:F0)

0
97h
00h
R/W
8 bits

This 8-bit register controls a fixed DRAM hole from 15-16 MB.

Bit	Access & Default			Description	
7	R/W 0 b	 Hole Enable (HEN): This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped. 0: No memory hole. 1: Memory hole from 15 MB to 16 MB. 			
6:1		Reserved			
0	R/W	MDA Present (N	IDAP):		
	0 b	This bit works with the VGA Enable bits in the BCTRL register of Device 1 to control the routing of CPU initiated transactions targeting MDA compatible I/O a memory address ranges. This bit should not be set if device 1's VGA Enable bit not set. If device 1's VGA enable bit is not set, then accesses to I/O address range x3BCh-x3BFh are forwarded to the DMI.			
		If the VGA enable bit is set and MDA is not present, then accesses to I/O address range x3BCh-x3BFh are forwarded to PCI Express if the address is within the corresponding IOBASE and IOLIMIT, otherwise they are forwarded to the DMI. MDA resources are defined as the following:			
		Memory: 0B0000h - 0B7FFFh			
		I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh,			
		(Including ISA address aliases, A [15:10] are not used in decode)			
		Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the DMI even if the reference includes I/O locations not listed above.			
		The following table shows the behavior for all combinations of MDA and VGA:			
		VGAEN	MDAP	Description	
		0	0	All references to MDA an dVGA space are routed to the DMI	
		0	1	Invalid combination	
		1	0	Reserved	
		1	1	MDA references are routed to the DMI	
		lanes when MAE	(PCICMD1[1]) O cycles can or	an only be routed across the PCI Express x8 is set. Ily be routed across the PCI Express x8 lanes if	

4.1.28 **REMAPBASE - Remap Base Address Register**

PCI Device:	0
Address Offset:	98-99h
Default Value:	03FFh
Access:	R/W;
Size:	16 bits

Bit	Access & Default	Description
15:10		Reserved
9:0	R/W 3FFh	Remap Base Address [35:26] (REMAPBASE): The value in this register defines the lower boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the Remap Base Address are assumed to be 0's. Thus the bottom of the defined memory range will be aligned to a 64 MB boundary. When the value in this register is greater than the value programmed into the Remap Limit register, the Remap window is disabled. Note: Bit 0 (Address Bit 26) must be a 0

4.1.29 REMAPLIMIT - Remap Limit Address Register

PCI Device:	0
Address Offset:	9A-9Bh
Default Value:	0000h
Access:	R/W
Size:	16 bits

Bit	Access & Default	Description
15:10		Reserved
9:0	R/W 00h	Remap Limit Address [35:26] (REMAPLMT): The value in this register defines the upper boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[25:0] of the remap limit address are assumed to be F's. Thus the top of the defined range will be one less than a 64 MB boundary. When the value in this register is less than the value programmed into the Remap Base register, the Remap window is disabled. Note: bit 0 (address bit 26) must be a 0

4.1.30 TOLUD—Top of Low Usable DRAM (D0:F0)

PCI Device:	0
Address Offset:	9Ch
Default Value:	08h
Access:	R/W
Size:	8 bits

This 8-bit register defines the Top of Low Usable DRAM. TSEG Memory are within the DRAM space defined. From the top, MCH optionally claims 1, 2, or 8 MB of DRAM for TSEG if enabled.

Bit	Access & Default	Description
7:3	R/W 01 h	Top of Low Usable DRAM (TOLUD): This register contains bits 31 to 27 of an address one byte above the maximum DRAM memory that is usable by the operating system. Address bits 31 down to 27 programmed to 01h implies a minimum memory size of 128 MBs.
		Configuration software must set this value to the smaller of the following 2 choices: Maximum amount memory in the system plus one byte or the minimum address allocated for PCI memory.
		Address bits 26:0 are assumed to be 000_0000 h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register.
		If this register is set to 0000 0 b it implies 128 MBs of system memory.
		Note: The Top of Low Usable DRAM is the lowest address above TSEG.
2:0		Reserved

4.1.31 SMRAM—System Management RAM Control (D0:F0)

PCI Device:	0
Address Offset:	9Dh
Default Value:	02h
Access:	R/W/L, RO
Size:	8 bits

The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are treated. The Open, Close, and Lock bits function only when G_SMRAME bit is set to a 1. Also, the OPEN bit must be reset before the LOCK bit is set.

Bit	Access & Default	Description
7		Reserved
6	R/W/L 0 b	SMM Space Open (D_OPEN): (When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.
5	R/W/L 0 b	SMM Space Closed (D_CLS): When D_CLS = 1 SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This will allow SMM software to reference through SMM space to update the display even when SMM is mapped over the VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. Note that the D_CLS bit only applies to Compatible SMM space.

Bit	Access & Default	Description
4	R/W/L 0 b	SMM Space Locked (D_LCK): When D_LCK is set to 1 then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only. D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function.
3	R/W/L 0 b	Global SMRAM Enable (G_SMRAME): If set to a 1, then Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADSB with SMM decode). To enable Extended SMRAM function this bit has be set to 1. Refer to the section on SMM for more details. Once D_LCK is set, this bit becomes read only.
2:0	RO 010 b	Compatible SMM Space Base Segment (C_BASE_SEG): This field indicates the location of SMM space. SMM DRAM is not remapped. It is simply made visible if the conditions are right to access SMM space, otherwise the access is forwarded to DMI. Since the MCH supports only the SMM space between A0000h and BFFFFh, this field is hardwired to 010.

4.1.32 ESMRAMC—Extended System Management RAM Control (D0:F0)

PCI Device:	0
Address Offset:	9Eh
Default Value:	38h
Access:	R/W/L, RO
Size:	8 bits

The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MB.

Bit	Access & Default	Description
7	R/W/L 0 b	Enable High SMRAM (H_SMRAME): This bit controls the SMM memory space location (i.e. above 1 MB or below 1 MB) When G_SMRAME is 1 and H_SMRAME is 1, the high SMRAM memory space is enabled. SMRAM accesses within the range 0FEDA0000h to 0FEDBFFFFh are remapped to DRAM addresses within the range 000A0000h to 000BFFFFh. Once D_LCK has been set, this bit becomes read only.
6	R/W/C 0 b	Invalid SMRAM Access (E_SMERR): This bit is set when CPU has accessed the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with the D-OPEN bit = 0. It is software's responsibility to clear this bit. The software must write a 1 to this bit to clear it.
5	RO	SMRAM Cacheable (SM_CACHE): This bit is forced to '1' by the MCH.
	1 b	
4	RO	L1 Cache Enable for SMRAM (SM_L1): This bit is forced to '1' by the MCH.
	1 b	
3	RO	L2 Cache Enable for SMRAM (SM_L2): This bit is forced to '1' by the MCH.
	1 b	

Bit	Access & Default	Description
2:1	R/W/L 00 b	TSEG Size (TSEG_SZ): This field selects the size of the TSEG memory block if enabled. Memory from the top of DRAM space is partitioned away so that it may only be accessed by the processor interface and only then when the SMM bit is set in the request packet. Non-SMM accesses to this memory region are sent to the DMI when the TSEG memory block is enabled. 00: 1-MB TSEG (TOLUD – 1M) to (TOLUD). 01: 2-MB TSEG (TOLUD – 2M) to (TOLUD). 10: 8-MB TSEG (TOLUD – 8M) to (TOLUD). 11: Reserved. Once D_LCK has been set, these bits become read only.
0	R/W/L 0 b	TSEG Enable (T_EN): This bit is the enabling of SMRAM memory for Extended SMRAM space only. When G_SMRAME =1 and TSEG_EN = 1, the TSEG is enabled to appear in the appropriate physical address space. Note that once D_LCK is set, this bit becomes read only.

4.1.33 TOM - Top of Memory

PCI Device:	0
Address Offset:	A0-A1h
Default Value:	0001h
Access:	RO; R/W;
Size:	16 bits

This Register contains the size of physical memory. BIOS determines the memory size reported to the OS using this Register.

Bit	Access & Default	Description
15:9		Reserved
8:0	R/W 01h	Top of Memory (TOM): This register reflects the total amount of populated physical memory. This is also the amount of addressable physical memory when remapping is used appropriate to ensure that no physical memory is wasted. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped I/O). These bits correspond to address bits 35:27 (128 MB granularity). Bits 26:0 are assumed to be 0.

4.1.34 ERRSTS—Error Status (D0:F0)

PCI Device:	0
Address Offset:	C8-C9h
Default Value:	0000h
Access:	R/WC/S, RO
Size:	16 bits

This register is used to report various error conditions via the SERR DMI messaging mechanism. A SERR DMI message is generated on a zero to one transition of any of these flags (if enabled by the ERRCMD and PCICMD registers). These bits are set regardless of whether or not the SERR is enabled and generated. After the error processing is complete, the error logging mechanism can be unlocked by clearing the appropriate status bit by software writing a '1' to it.

Bit	Access & Default	Description
15:12		Reserved
11	R/WC/S 0 b	MCH Thermal Sensor Event for SMI/SCI/SERR: This bit indicates that a MCH Thermal Sensor trip has occurred and an SMI, SCI or SERR has been generated. The status bit is set only if a message is sent based on Thermal event enables in Error command, SMI command and SCI command registers. A trip point can generate one of SMI, SCI, or SERR interrupts (two or more per event is invalid). Multiple trip points can generate the same interrupt, if software chooses this mode, subsequent trips may be lost. If this bit is already set, then an interrupt message will not be sent on a new thermal sensor event.
10		Reserved
9	R/WC/S 0 b	LOCK to non-DRAM Memory Flag (LCKF): When this bit is set to 1, the MCH has detected a lock operation to memory space that did not map into DRAM.
8	R/WC/S 0 b	Received Refresh Timeout Flag (RRTOF): This bit is set when 1024 memory core refreshes are enqueued.
7:2		Reserved
1	R/WC/S 0 b	Multiple-bit DRAM ECC Error Flag (DMERR): If this bit is set to 1, a memory read data transfer had an uncorrectable multiple-bit error. When this bit is set, the address, channel number, and device number that caused the error are logged in the DEAP register. Once this bit is set the DEAP, DERRSYN, and DERRDST fields are locked until the CPU clears this bit by writing a 1. Software uses bits [1:0] to detect whether the logged error address is for Single or Multiple-bit error. This bit is reset on PWROK.
0	R/WC/S 0 b	Single-bit DRAM ECC Error Flag (DSERR): If this bit is set to 1, a memory read data transfer had a single-bit correctable error and the corrected data was sent for the access. When this bit is set the address and device number that caused the error are logged in the DEAP register. Once this bit is set the DEAP, DERRSYN, and DERRDST fields are locked to further single bit error updates until the CPU clears this bit by writing a 1. A multiple bit error that occurs after this bit is set will overwrite the DEAP and DERRSYN fields with the multiple-bit error signature and the DMERR bit will also be set. A single bit error that occurs after a multibit error will set this bit but will not overwrite the other fields. This bit is reset on PWROK.

4.1.35 ERRCMD—Error Command (D0:F0)

PCI Device:	0
Address Offset:	CA-CBh
Default Value:	0000h
Access:	R/W
Size:	16 bits

This register controls the MCH responses to various system errors. Since the MCH does not have an SERRB signal, SERR messages are passed from the MCH to the ICH7 over DMI. When a bit in this register is set, a SERR message will be generated on DMI whenever the corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device 0 via the PCI Command register.

Bit	Access & Default	Description	
15:12		Reserved	
11	R/W	SERR on MCH Thermal Sensor Event (TSESERR)	
	0 b	 The MCH generates a DMI SERR special cycle when bit 11 of the ERRSTS is set. The SERR must not be enabled at the same time as the SMI for the same thermal sensor event. Departing of this condition via SERD mesoaging is dischard. 	
		0: Reporting of this condition via SERR messaging is disabled.	
10		Reserved	
9	R/W	SERR on LOCK to non-DRAM Memory (LCKERR)	
	0 b	1: The MCH will generate a DMI SERR special cycle whenever a CPU lock cycle is detected that does not hit DRAM.	
		0: Reporting of this condition via SERR messaging is disabled.	
8	R/W	SERR on DRAM Refresh Timeout (DRTOERR)	
	0 b	1: The MCH generates a DMI SERR special cycle when a DRAM Refresh timeout occurs.	
		0: Reporting of this condition via SERR messaging is disabled.	
7:2		Reserved	
1	R/W	SERR Multiple-Bit DRAM ECC Error (DMERR):	
	0 b	1: The MCH generates an SERR message over DMI when it detects a multiple- bit error reported by the DRAM controller.	
		 Reporting of this condition via SERR messaging is disabled. For systems not supporting ECC this bit must be disabled. 	
0	R/W	SERR on Single-bit ECC Error (DSERR):	
	0 b	1: The MCH generates an SERR special cycle over DMI when the DRAM controller detects a single bit error.	
		0: Reporting of this condition via SERR messaging is disabled.	
		For systems that do not support ECC this bit must be disabled.	

4.1.36 SMICMD - SMI Command (D0:F0)

PCI Device:	0	
Address Offset:	CC-CDh	
Default Value:	0000h	
Access:	RO; R/W;	
Size:	16 bits	

This register enables various errors to generate an SMI DMI special cycle. When an error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively. Note that one and only one message type can be enabled.

Bit	Access & Default	Description
15:2		Reserved
1	R/W 0 b	 SMI on Multiple-Bit DRAM ECC Error (DMESMI): 1: The MCH generates an SMI DMI message when it detects a multiple-bit error reported by the DRAM controller.
		 Reporting of this condition via SMI messaging is disabled. For systems not supporting ECC this bit must be disabled.
0	R/W 0 b	 SMI on Single-bit ECC Error (DSESMI): 1: The MCH generates an SMI DMI special cycle when the DRAM controller detects a single bit error. 0: Reporting of this condition via SMI messaging is disabled. For systems that do not support ECC this bit must be disabled.

4.1.37 SCICMD - SCI Command (D0:F0)

PCI Device:	0
Address Offset:	CE-CFh
Default Value:	0000h
Access:	RO; R/W;
Size:	16 bits

This register enables various errors to generate an SMI DMI special cycle. When an error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively. Note that one and only one message type can be enabled.

Bit	Access & Default	Description
15:2		Reserved
1	R/W 0b	SCI on Multiple-Bit DRAM ECC Error (DMESCI):
		 The MCH generates an SCI DMI message when it detects a multiple-bit error reported by the DRAM controller.
		 Reporting of this condition via SCI messaging is disabled. For systems not supporting ECC this bit must be disabled.
0	R/W	SCI on Single-bit ECC Error (DSESCI):
	Ob	 The MCH generates an SCI DMI special cycle when the DRAM controller detects a single bit error.
		0: Reporting of this condition via SCI messaging is disabled. For systems that do not support ECC this bit must be disabled.

4.1.38 SKPD—Scratchpad Data (D0:F0)

PCI Device:	0
Address Offset:	DC-DFh
Default Value:	00000000h
Access:	R/W
Size:	32 bits

This register holds 32 writable bits with no functionality. It is for the convenience of BIOS and graphics drivers.

Bit	Access & Default	Description
31:0	R/W 00000000 h	Scratchpad Data: 1 DWord of data storage.

4.1.39 CAPID0—Capability Identifier (D0:F0)

PCI Device:	0
Address Offset:	E0-E8h
Default Value:	00000000001090009h
Access:	RO
Size:	72 bits

Bit	Access & Default	Description
71:28		Reserved
27:24	RO 1h	CAPID Version: This field has the value 0001b to identify the first revision of the CAPID register definition.
23:16	RO 09h	CAPID Length: This field has the value 09h to indicate the structure length (9 bytes).
15:8	RO 00h	Next Capability Pointer: This field is hardwired to 00h indicating the end of the capabilities linked list.
7:0	RO 09h	CAP_ID: This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for vendor dependent capability pointers.

4.1.40 EDEAP—Extended DRAM Error Address Pointer (D0:F0)

PCI Device:	0
Address Offset:	FCh
Default Value:	00h
Access:	RO/S
Size:	8 bits

Bit	Access & Default	Description
7:1		Reserved
0	RO/S 0 b	Extended Error Address Pointer (EEAP): This bit provides bit 32 of the error address after any remapping when an ECC error occurs. This bit is concatenated with bits 31:7 of the DEAP register to get bits 32:7 of the address in which an error occurred. This bit is reset on PWROK.

4.2 MCHBAR Configuration Register Details

The MCHBAR registers are offset from the MCHBAR base address. Table 4-2 provides an address map of the registers listed by address offset in ascending order. Detailed bit descriptions of the registers follow the table.

Default Address Register **Register Name** Access Offset Symbol Value 100h C0DRB0 Channel 0 DRAM Rank Boundary Address 0 00h R/W C0DRB1 Channel 0 DRAM Rank Boundary Address 1 00h R/W 101h 102h C0DRB2 Channel 0 DRAM Rank Boundary Address 2 00h R/W 103h C0DRB3 Channel 0 DRAM Rank Boundary Address 3 00h R/W 108h C0DRA0 Channel 0 DRAM Rank 0,1 Attribute 00h R/W 109h C0DRA2 Channel 0 DRAM Rank 2,3 Attribute 00h R/W CODCLKDIS Channel 0 DRAM Clock Disable 10Ch R/W 00h 10E-10Fh **COBNKARC** Channel 0 DRAM Bank Architecture 0000h R/W 114–117h C0DRT1 Channel 0 DRAM Timing Register 1 02483D22h R/W C0DRC0 Channel 0 DRAM Controller Mode 0 4000280_00 R/W 120-123h ss_h 124-127h C0DRC1 Channel 0 DRAM Controller Mode 1 0000000h R/W C1DRB0 180h Channel 1 DRAM Rank Boundary Address 0 00h R/W 181h C1DRB1 Channel 1 DRAM Rank Boundary Address 1 00h R/W C1DRB2 182h Channel 1 DRAM Rank Boundary Address 2 00h R/W C1DRB3 183h Channel 1 DRAM Rank Boundary Address 3 00h R/W 188h C1DRA0 Channel 1 DRAM Rank 0,1 Attribute 00h R/W C1DRA2 189h Channel 1 DRAM Rank 2,3 Attribute 00h R/W C1DCLKDIS Channel 1 DRAM Clock Disable R/W/L 18Ch 00h 18E-18Fh C1BNKARC Channel 1 Bank Architecture 0000h R/W 194–197h C1DRT1 Channel 1 DRAM Timing Register 1 02903D22h R/W 1A0-1A3h C1DRC0 Channel 1 DRAM Controller Mode 0 0000000h R/W 1A4-1A7h C1DRC1 Channel 1 DRAM Controller Mode 1 0000000h R/W. R/W/L PMCFG 0000000h R/W F10-F13h **Power Management Configuration**

Power Management Status

Table 4-2. MCHBAR Register Address Map

0000000h

R/WC/S

F14-F17h

PMSTS

4.2.1 C0DRB0—Channel A DRAM Rank Boundary Address 0

MMIO Range:	MCHBAR
Address Offset:	100h
Default Value:	00h
Access:	R/W
Size:	8 bits

The **DRAM Rank Boundary Register** defines the upper boundary address of each DRAM rank with a granularity of 32 MB. Each rank has its own single-byte **DRB** register. These registers are used to determine which chip select will be active for a given address.

Channel and rank map:

Channel A Rank 0:	100h
Channel A Rank 1:	101h
Channel A Rank 2:	102h
Channel A Rank 3:	103h
Channel B Rank 0:	180h
Channel B Rank 1:	181h
Channel B Rank 2:	182h
Channel B Rank 3:	183h

Single Channel or Asymmetric Channels Example

If the channels are independent, addresses in Channel B should begin where addresses in Channel A left off, and the address of the first rank of Channel A can be calculated from the technology (256 Mb, 512 Mb, or 1 Gb) and the x8 or x16 configuration. With independent channels a value of 01h in **C0DRB0** indicates that 32 MB of DRAM has been populated in the first rank, and the top address in that rank is 32 MB.

- Programming guide:

If Channel A is empty, all of the C0DRBs are programmed with 00h.

C0DRB0 = Total memory in chA rank0 (in 32 MB increments)

C0DRB1 = Total memory in chA rank0 + chA rank1 (in 32 MB increments)

C1DRB0 = Total memory in chA rank0 + chA rank1 + chA rank2 + chA rank3 + chB rank0 (in 32 MB increments)

If Channel B is empty, all of the C1DRBs are programmed with the same value as C0DRB3.

Interleaved Channels Example

If channels are interleaved, corresponding ranks in opposing channels will contain the same value, and the value programmed takes into account the fact that twice as many addresses are spanned by this rank compared to the single channel case. With interleaved channels, a value of 01h in **C0DRB0** and a value of 01h in **C1DRB0** indicate that 32 MB of DRAM has been populated in the first rank of each channel and the top address in that rank of either channel is 64 MB.

— Programming guide:

C0DRB0 = C1DRB0 = Total memory in chA rank0 (in 32 MB increments)

C0DRB1 = C1DRB1 = Total memory in chA rank0 + chA rank1 (in 32 MB increments)

```
C0DRB3 = C1DRB3 = Total memory in chA rank0 + chA rank1+ chA rank2 + chA rank3 (in 32 MB increments)
```

In all modes, if a DIMM is single sided, it appears as a populated rank and an empty rank. A DRB must be programmed appropriately for each.

Each Rank is represented by a byte. Each byte has the following format.

Bit	Access & Default	Description
7:0	R/W 00 h	Channel A DRAM Rank Boundary Address: This 8 bit value defines the upper and lower addresses for each DRAM rank. Bits 6:2 are compared against Address 31:27 to determine the upper address limit of a particular rank. Bits 1:0 must be 0s. Bit 7 may be programmed to a '1' in the highest DRB (DRB3) if 4 GBs of memory is present.

4.2.2 C0DRB1—Channel A DRAM Rank Boundary Address 1

MCHBAR
101h
00h
R/W
8 bits

The operation of this register is detailed in the description for register C0DRB0.

4.2.3 C0DRB2—Channel A DRAM Rank Boundary Address 2

MCHBAR
102h
00h
R/W
8 bits

The operation of this register is detailed in the description for register C0DRB0.

4.2.4 C0DRB3—Channel A DRAM Rank Boundary Address 3

MMIO Range:	MCHBAR
Address Offset:	103h
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for register C0DRB0.

4.2.5 C0DRA0—Channel A DRAM Rank 0,1 Attribute

MMIO Range:MCHBARAddress Offset:108hDefault Value:00hAccess:R/WSize:8 bits

The **DRAM Rank Attribute Registers** define the page sizes to be used when accessing different ranks. These registers should be left with their default value (all zeros) for any rank that is unpopulated, as determined by the corresponding CxDRB registers. Each byte of information in the **CxDRA** registers describes the page size of a pair of ranks.

Channel and rank map:

Channel A Rank 0, 1: 108h Channel A Rank 2, 3: 109h Channel B Rank 0, 1: 188h Channel B Rank 2, 3: 189h

Bit	Access & Default	Description
7		Reserved
6:4	R/W 000 b	Channel A DRAM odd Rank Attribute: This 3 bit field defines the page size of the corresponding rank. 000: Unpopulated 001: Reserved 010: 4 KB 011: 8 KB 100: 16 KB Others: Reserved
3		Reserved
2:0	R/W 000 b	Channel A DRAM even Rank Attribute: This 3 bit field defines the page size of the corresponding rank. 000: Unpopulated 001: Reserved 010: 4 KB 011: 8 KB 100: 16 KB Others: Reserved

4.2.6 C0DRA2—Channel A DRAM Rank 2,3 Attribute

MMIO Range:	MCHBAR
Address Offset:	109h
Size:	8 bits

The operation of this register is detailed in the description for register C0DRA0.

4.2.7 CODCLKDIS—Channel A DRAM Clock Disable

MMIO Range:	MCHBAR
Address Offset:	10Ch
Default Value:	00h
Access:	R/W
Size:	8 bits

This register can be used to disable the System Memory Clock signals to each DIMM slot, which can significantly reduce EMI and Power concerns for clocks that go to unpopulated DIMMs. Clocks should be enabled based on whether a slot is populated, and what kind of DIMM is present.

Bit	Access & Default	Description
7:6		Reserved
5	R/W	DIMM clock gate enable pair 5
	0 b	0: Tri-state the corresponding clock pair.
		1: Enable the corresponding clock pair.
4	R/W	DIMM clock gate enable pair 4
	0 b	0: Tri-state the corresponding clock pair.
		1: Enable the corresponding clock pair.
3	R/W	DIMM clock gate enable pair 3
	0 b	0: Tri-state the corresponding clock pair.
		1: Enable the corresponding clock pair.
2	R/W	DIMM clock gate enable pair 2
	0 b	0: Tri-state the corresponding clock pair.
		1: Enable the corresponding clock pair.
1	R/W	DIMM clock gate enable pair 1
	0 b	0: Tri-state the corresponding clock pair.
		1: Enable the corresponding clock pair.
0	R/W	DIMM clock gate enable pair 0
	0 b	0: Tri-state the corresponding clock pair.
		1: Enable the corresponding clock pair.

Note: Since there are multiple clock signals assigned to each Rank of a DIMM, it is important to clarify exactly which Rank width field affects which clock signal:

Channel	Rank	Clocks Affected
0	0 or 1	SCLK_A[2:0]/ SCLK_A[2:0]#
0	2 or 3	SCLK_A[5:3]/ SCLK_A[5:3]#
1	0 or 1	SCLK_B[2:0]/ SCLK_B[2:0]#
1	2 or 3	SCLK_B[5:3]/ SCLK_B[5:3]#

4.2.8 COBNKARC—Channel A DRAM Bank Architecture

MCHBAR
0
10E-10Fh
0000h
R/W
16 bits

This register is used to program the bank architecture for each Rank.

Bit	Access & Default	Description
15:8		Reserved
7:6	R/W	Rank 3 Bank Architecture
	00 b	00: 4 Bank.
		01: 8 Bank.
		1X: Reserved
5:4	R/W	Rank 2 Bank Architecture
	00 b	00: 4 Bank.
		01: 8 Bank.
		1X: Reserved
3:2	R/W	Rank 1 Bank Architecture
	00 b	00: 4 Bank.
		01: 8 Bank.
		1X: Reserved
1:0	R/W	Rank 0 Bank Architecture
	00 b	00: 4 Bank.
		01: 8 Bank.
		1X: Reserved

4.2.9 C0DRT1—Channel A DRAM Timing Register

MMIO Range:	MCHBAR
Address Offset:	114-117h
Default Value:	02483D22h
Access:	R/W
Size:	32 bits

Bit	Access & Default	Description
31:24		Reserved
23:20	R/W 9 h	Activate to Precharge delay (tRAS). This bit controls the number of DRAM clocks for tRAS. Minimum recommendations are beside their corresponding encodings. 0h – 3h Reserved 4h – Fh Four to Fifteen Clocks respectively.
19:10		Reserved

Bit	Access & Default	Description
9:8	R/W 01 b	CASB Latency (tCL). This field is programmable on DDR2 DIMMs. The value programmed here must match the CAS Latency of every DDR2 DIMM in the system. Encoding DDR2 CL 00: 5 01: 4 10: 3 11: Reserved
7		Reserved
6:4	R/W 010 b	DRAM RAS to CAS Delay (tRCD). This bit controls the number of clocks inserted between a row activate command and a read or write command to that row. Encoding tRCD 000: 2 DRAM Clocks 001: 3 DRAM Clocks 010: 4 DRAM Clocks 011: 5 DRAM Clocks 100 - 111: Reserved
3		Reserved
2:0	R/W 010 b	DRAM RAS Precharge (tRP). This bit controls the number of clocks that are inserted between a row precharge command and an activate command to the same rank. Encoding tRP 000: 2 DRAM Clocks 001: 3 DRAM Clocks 010: 4 DRAM Clocks 011: 5 DRAM Clocks 100 - 111: Reserved

4.2.10 C0DRC0—Channel A DRAM Controller Mode 0

MMIO Range:	MCHBAR
Address Offset:	120-123h
Default Value:	4000280_00ss_h
Access:	R/W
Size:	32 bits

Bit	Access & Default	Description
31:30		Reserved
29	R/W 0 b	Initialization Complete (IC): This bit is used for communication of software state between the memory controller and the BIOS. BIOS sets this bit to 1 after initialization of the DRAM memory array is complete.
28:11		Reserved

Bit	Access & Default	Description	
10:8	R/W 000 b	Refresh Mode Select (RMS): This field determines whether refresh is enabled and, if so, at what rate refreshes will be executed. 000: Refresh disabled 001: Refresh enabled. Refresh interval 15.6 µsec 010: Refresh enabled. Refresh interval 7.8 µsec 011: Refresh enabled. Refresh interval 3.9 µsec 100: Refresh enabled. Refresh interval 1.95 µsec 111: Refresh enabled. Refresh interval 64 clocks (fast refresh mode) Other: Reserved	
7		Reserved	
6:4	R/W 000 b	 Mode Select (SMS): These bits select the special operational mode of the DRAM interface. The special modes are intended for initialization at power up. 000: Post Reset state: When the MCH exits reset (power-up or otherwise), the mode select field is cleared to "000". During any reset sequence, while power is applied and reset is active, the MCH de-asserts all CKE signals. After internal reset is de-asserted, CKE signals remain de-asserted until this field is written to a value different than "000". On this event, all CKE signals are asserted. During suspend, MCH internal signal triggers DRAM controller to flush pending commands and enter all ranks into Self-Refresh mode. As part of resume sequence, MCH will be reset, which will clear this bit field to "000" and maintain CKE signals de-asserted. After internal reset is de-asserted, CKE signals remain de-asserted until this field is written to a value different than "000". On this event, all CKE signals are asserted. During entry to other low power states (C3, S1), MCH internal signal triggers DRAM controller to flush pending commands and enter all ranks into Self-Refresh mode. During exit to normal mode, MCH signal triggers DRAM controller to exit Self-Refresh and resume normal operation without S/W involvement. 001: NOP Command Enable: All CPU cycles to DRAM result in a NOP command on the DRAM interface. 010: All Banks Pre-charge Enable: All CPU cycles to DRAM result in a "all banks precharge" command on the DRAM interface. 011: Mode Register Set Enable: All CPU cycles to DRAM result in a "mode register" set command on the DRAM interface. 002: Extended Mode Registers". 100: Extended Mode Registers". 100: Extended Mode Register Set Enable: All CPU cycles to DRAM result in a "mode register" set command on the DRAM interface. Host address lines are mapped to DRAM address lines in order to specify the command sent, as shown in Volume 1, System Memory Controller section, memory Detection and Ini	
3:2		Reserved	
5.2			

Bit	Access & Default	Description
1:0	RO	DRAM Type (DT) Used to select between supported SDRAM types. 00: Reserved 01: Reserved 10: Second Revision Dual Data Rate (DDR2) SDRAM 11: Reserved

4.2.11 C0DRC1—Channel A DRAM Controller Mode 1

MMIO Range:	MCHBAR
Address Offset:	124-127h
Default Value:	00000000h
Access:	R/W
Size:	32 bits

Bit	Access & Default	Description
31	R/W 0 b	 Enhanced Addressing Enable (ENHADE): 0: Disabled. DRAM address map follows the standard address map. 1: Enabled. DRAM address map follows the enhanced address map.
30:0		Intel Reserved

4.2.12 C1DRB0—Channel B DRAM Rank Boundary Address 0

MMIO Range:	MCHBAR
Address Offset:	180h
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for register C0DRB0.

4.2.13 C1DRB1—Channel B DRAM Rank Boundary Address 1

MCHBAR
181h
00h
R/W
8 bits

The operation of this register is detailed in the description for register C0DRB0.

4.2.14 C1DRB2—Channel B DRAM Rank Boundary Address 2

MMIO Range:MCHBARAddress Offset:182hDefault Value:00hAccess:R/WSize:8 bits

intel

The operation of this register is detailed in the description for register C0DRB0.

4.2.15 C1DRB3—Channel B DRAM Rank Boundary Address 3

MMIO Range:	MCHBAR
Address Offset:	183h
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for register C0DRB0.

4.2.16 C1DRA0—Channel B DRAM Rank 0,1 Attribute

MMIO Range:	MCHBAR
Address Offset:	188h
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for register C0DRA0.

4.2.17 C1DRA2—Channel B DRAM Rank 2,3 Attribute

MMIO Range:	MCHBAR
Address Offset:	189h
Default Value:	00h
Access:	R/W
Size:	8 bits

The operation of this register is detailed in the description for register C0DRA0.

4.2.18 C1DCLKDIS—Channel B DRAM Clock Disable

MMIO Range:	MCHBAR
Address Offset:	18Ch
Default Value:	00h
Access:	R/W/L
Size:	8 bits

The operation of this register is detailed in the description for register C0DCLKDIS.

4.2.19 C1BNKARC—Channel B Bank Architecture

MMIO Range:MCHBARAddress Offset:18E-18FhDefault Value:0000hAccess:R/WSize:16 bits

The operation of this register is detailed in the description for register COBNKARC.

intal

4.2.20 C1DRT1—Channel 1 DRAM Timing Register 1

MMIO Range:	MCHBAR
Address Offset:	194-197h
Default Value:	02483D22h
Access:	R/W
Size:	32 bits

The operation of this register is detailed in the description for register C0DRT1.

4.2.21 C1DRC0—Channel 1 DRAM Controller Mode 0

MMIO Range:	MCHBAR
Address Offset:	1A0-1A3h
Default Value:	4000280_00ssh
Access:	R/W
Size:	32 bits

The operation of this register is detailed in the description for register C0DRC0.

4.2.22 C1DRC1—Channel 1 DRAM Controller Mode 1

MMIO Range:	MCHBAR
Address Offset:	1A4-1A7h
Default Value:	0000000h
Access:	R/W, R/W/L
Size:	32 bits

The operation of this register is detailed in the description for register C0DRC1.

4.2.23 PMCFG—Power Management Configuration

PCI Device: Address Offset: Default Value: Access: Size: MCHBAR F10-F13h 00000000h R/W 32 bits

Bit	Access & Default	Description
31:5		Reserved

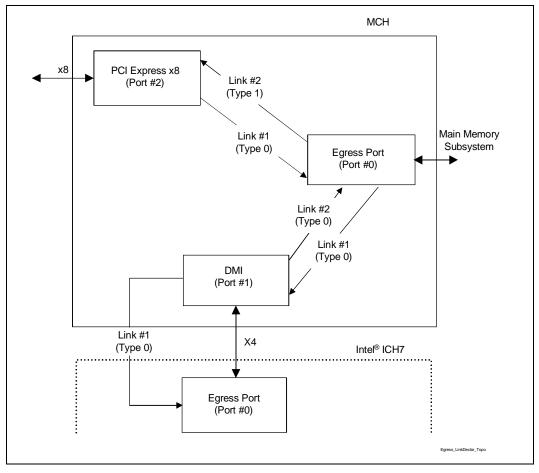
Bit	Access & Default	Description
4	R/W 0 b	Enhanced Power Management Features Enable 0: Legacy power management mode 1: Reserved.
3:0		Reserved

4.2.24 PMSTS—Power Management Status

PCI Device:	MCHBAR
Address Offset:	F14-F17h
Default Value:	0000000h
Access:	R/WC/S
Size:	32 bits

This register is Reset by PWROK only.

Bit	Access & Default	Description
31:2		Reserved
1	R/WC/S	Channel B in self-refresh
	0 b	Set by power management hardware after Channel B is placed in self refresh as a result of a Power State or a Reset Warn sequence,
		Cleared by Power management hardware before starting Channel B self refresh exit sequence initiated by a power management exit.
		Cleared by the BIOS in a warm reset (Reset# asserted while PWROK is asserted) exit sequence.
		0: Channel B not ensured to be in self-refresh.1: Channel B in Self-Refresh.
0	R/WC/S	Channel A in Self-refresh
	0 b	Set by power management hardware after Channel A is placed in self refresh as a result of a Power State or a Reset Warn sequence,
		Cleared by Power management hardware before starting Channel A self refresh exit sequence initiated by a power management exit.
		Cleared by the BIOS in a warm reset (Reset# asserted while PWOK is asserted) exit sequence.
		0: Channel A not ensured to be in self-refresh.1: Channel A in Self-Refresh.


4.3 Egress Port Register Summary

The MCHBAR registers are offset from the EPBAR base address. Table 4-3 provides an address map of the registers listed by address offset in ascending order. Detailed bit descriptions of the registers follow the table. Link Declaration Topology is shown in Figure 4-1.

Table 4-3. Egress Port Register Address Map

Address Offset	Register Symbol	Register Name	Default Value	Access
044h–047h	EPESD	EP Element Self Description	00000201h	R/WO, RO
050h–053h	EPLE1D	EP Link Entry 1 Description	01000000h	R/WO, RO
058h–05Fh	EPLE1A	EP Link Entry 1 Address	000000000 000000h	R/WO
060h–063h	EPLE2D	EP Link Entry 2 Description	02000002h	R/WO, RO
068h–06Fh	EPLE2A	EP Link Entry 2 Address	0000000000 008000h	RO

Figure 4-1. Link Declaration Topology

4.3.1 EPESD—EP Element Self Description

MMIO Range:	EPBAR
Address Offset:	044-047h
Default Value:	00000201h
Access:	RO, R/WO
Size:	32 bits

This register provides information about the root complex element containing this Link Declaration Capability.

Bit	Access & Default	Description
31:24	RO	Port Number
	00 h	This field specifies the port number associated with this element with respect to the component that contains this element.
		Value of 00 h indicates to configuration software that this is the default egress port.
23:16	R/WO	Component ID
	00 h	This field identifies the physical component that contains this Root Complex Element. Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:8	RO	Number of Link Entries
	02 h	This field indicates the number of link entries following the Element Self Description. This field reports 2 (one each for the PCI Express x8 and the DMI).
7:4		Reserved
3:0	RO	Element Type: This field indicates the type of the Root Complex Element. Value of
	01h	1h represents a port to system memory

4.3.2 EPLE1D—EP Link Entry 1 Description

MMIO Range:	EPBAR
Address Offset:	050-053h
Default Value:	0100000h
Access:	RO, R/WO
Size:	32 bits

This register provides the first part of a Link Entry, which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
31:24	RO	Target Port Number
	01 h	This field specifies the port number associated with the element targeted by this link entry (DMI). The target port number is with respect to the component that contains this element as specified by the target component ID.

Bit	Access & Default	Description
23:16	R/WO	Target Component ID
	00 h	This field identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:2		Reserved
1	RO	Link Type
	0 b	This field indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.
0	R/WO	Link Valid
	0 b	0: Link Entry is not valid and will be ignored. 1: Link Entry specifies a valid link.

4.3.3 EPLE1A—EP Link Entry 1 Address

MMIO Range:	EPBAR
Address Offset:	058-05Fh
Default Value:	00000000_00000000h
Access:	R/WO
Size:	64 bits

This register provides the second part of a Link Entry, which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:32		Reserved
31:12	R/WO 0 0000 h	Link Address Memory mapped base address of the RCRB that is the target element (DMI) for this link entry.
11:0		Reserved

4.3.4 EPLE2D—EP Link Entry 2 Description

MMIO Range:	EPBAR
Address Offset:	060-063h
Default Value:	0200002h
Access:	RO, R/WO
Size:	32 bits

First part of a Link Entry, which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
31:24	RO	Target Port Number
	02 h	Specifies the port number associated with the element targeted by this link entry (PCI Express x8). The target port number is with respect to the component that contains this element as specified by the target component ID.

Bit	Access & Default	Description
23:16	R/WO	Target Component ID
	00 h	Identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:2		Reserved
1	RO	Link Type
	1 b	Indicates that the link points to configuration space of the integrated device which controls the x8 root port. The link address specifies the configuration address (segment, bus, device, function) of the target root port.
0	R/WO	Link Valid
	0 b	0: Link Entry is not valid and will be ignored. 1: Link Entry specifies a valid link.

4.3.5 EPLE2A—EP Link Entry 2 Address

MMIO Range:	EPBAR
Address Offset:	068-06Fh
Default Value:	00000000_00008000h
Access:	RO, R/WO
Size:	64 bits

Second part of a Link Entry, which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:28		Reserved
27:20	RO 00 h	Bus Number
19:15	RO 0 0001 b	Device Number Target for this link is PCI Express x8 port (Device 1).
14:12	RO 000 b	Function Number
11:0		Reserved

§

5

Host-PCI Express Bridge Registers (D1:F0)

Device 1 contains the controls associated with the PCI Express root port that is the intended to attach as the point for Intel 6700PXH 64-bit PCI Hub/Intel 6702PXH 64-bit PCI Hub. In addition, it also functions as the virtual PCI-to-PCI bridge. Table 5-1 provides an address map of the D1:F0 registers listed by address offset in ascending order. Section 5.1 provides a detailed bit description of the registers.

Warning: When reading the PCI Express "conceptual" registers such as this, you may not get a valid value unless the register value is stable.

The PCI Express Specification defines two types of reserved bits: Reserved and Preserved:

- 1. Reserved for future RW implementations; software must preserve value read for writes to bits.
- 2. Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for writes to bits.

Unless explicitly documented as Reserved and Zero, all bits marked as reserved are part of the Reserved and Preserved type, which have historically been the typical definition for Reserved.

It is important to note that most (if not all) control bits in this device cannot be modified unless the link is down. Software is required to first Disable the link, then program the registers, and then reenable the link (which will cause a full-retrain with the new settings).

Address Offset	Register Symbol	Register Name	Default Value	Access
00-01h	VID1	Vendor Identification	8086h	RO
02-03h	DID1	Device Identification	2779h	RO
04-05h	PCICMD1	PCI Command	0000h	RO, R/W
06-07h	PCISTS1	PCI Status	0010h	RO, R/WC
08h	RID1	Revision Identification	See Table 5.1.5	RO
09-0Bh	CC1	Class Code	060400h	RO
0Ch	CL1	Cache Line Size	00h	R/W
0Dh		Reserved		
0Eh	HDR1	Header Type	01h	RO
0F-17h		Reserved		
18h	PBUSN1	Primary Bus Number	00h	RO
19h	SBUSN1	Secondary Bus Number	00h	RO
1Ah	SUBUSN1	Subordinate Bus Number	00h	R/W
1Bh		Reserved		
1Ch	IOBASE1	I/O Base Address	F0h	RO
1Dh	IOLIMIT1	I/O Limit Address	00h	R/W

Table 5-1. Host-PCI Express Bridge Register Address Map (D1:F0) (Sheet 1 of 3)

Address Offset	Register Symbol	Register Name	Default Value	Access
1Eh-1Fh	SSTS1	Secondary Status	00h	RO, R/W/C
20-21h	MBASE1	Memory Base Address	FFF0h	R/W
22-23h	MLIMIT1	Memory Limit Address	0000h	R/W
24-25h	PMBASE1	Prefetchable Memory Base Address	FFF1h	RO, R/W
26-27h	PMLIMIT1	Prefetchable Memory Limit Address	0001h	RO, R/W
28-2Bh	PMBASEU1	Prefetchable Memory Base Address	0000000Fh	R/W
2C-2Fh	PMLIMITU1	Prefetchable Memory Limit Address	00000000h	R/W
30-33h		Reserved		
34h	CAPPTR1	Capabilities Pointer	88h	RO
35-3Bh		Reserved		
3Ch	INTRLINE1	Interrupt Line	00h	R/W
3Dh	INTRPIN1	Interrupt Pin	01h	RO
3E-3Fh	BCTRL1	Bridge Control	0000h	RO, R/W
40-7Fh		Reserved		
80-83h	PM_CAP1	Power Management Capabilities	C8029001h	RO
84-87h	PM_CS1	Power Management Control/ Status	00000000h	RO, R/W, R/W/S
88-8Bh	SS_CAPID	Subsystem ID and Vendor ID Capabilities	0000800Dh	RO
8C-8Fh	SS	Subsystem ID and Subsystem Vendor ID	00008086h	RO
90-91h	MSI_CAPID	Message Signaled Interrupts Capability ID	A005h	RO
92-93h	MC	Message Control	0000h	RO, R/W
94-97h	MA	Message Address	00000000h	RO, R/W
98-99h	MD	Message Data	0000h	R/W
9A-9Fh		Reserved		
A0-A1h	PCI_EXPRESS_CAPL	PCI Express Capability List	0010h	RO
A2-A3h	PCI_EXPRESS_CAP	PCI Express Capabilities	0141h	RO, R/WO
A4-A7h	DCAP	Device Capabilities	00000000h	RO
A8-A9h	DCTL	Device Control	0000h	R/W
AA-ABh	DSTS	Device Status	0000h	RO
AC-AFh	LCAP	Link Capabilities	02012D01h	R/WO
B0-B1h	LCTL	Link Control	0000h	RO, R/W
B2-B3h	LSTS	Link Status	1001h	RO
B4-B7h	SLOTCAP	Slot Capabilities	00000000h	R/WO
B8-B9h	SLOTCTL	Slot Control	01C0h	RO, R/W

Address Offset	Register Symbol	Register Name	Default Value	Access
BA-BBh	SLOTSTS	Slot Status	0000h	RO, R/W/C
BC-BDh	RCTL	Root Control	0000h	R/W
BE-BFh		Reserved		
C0-C3h	RSTS	Root Status	0000000h	RO, R/W/C
C4-FFh		Reserved		
EC-EFh	PCI_EXPRESS_LC	PCI Express Legacy Control	0000000h	RO, R/W
100-103h	VCECH	Virtual Channel Enhanced Capability Header	14010002h	RO
104-107h	PVCCAP1	Port VC Capability Register 1	0000001h	RO, R/WO
108-10Bh	PVCCAP2	Port VC Capability Register 2	0000001h	RO
10C-10Dh	PVCCTL	Port VC Control	0000h	R/W
10E-10Fh		Reserved		
110-113h	VCORCAP	VC0 Resource Capability	0000000h	RO
114-117h	VCORCTL	VC0 Resource Control	800000FFh	RO, R/W
118-119h		Reserved		
11A-11Bh	VCORSTS	VC0 Resource Status	0002h	RO
11C-11Fh	VC1RCAP	VC1 Resource Capability	00008000h	RO
120-123h	VC1RCTL	VC1 Resource Control	0100000h	RO, R/W
124-125h		Reserved		
126-127h	VC1RSTS	VC1 Resource Status	0002h	RO
128-13Fh		Reserved		
140-143h	RCLDECH	Root Complex Link Declaration Enhanced Capability Header	00010005h	RO
144-147h	ESD	Element Self Description	02000100h	RO, R/WO
148-14Fh		Reserved		
150-153h	LE1D	Link Entry 1 Description	0000000h	RO, R/WO
154-157h		Reserved		
158-15Fh	LE1A	Link Entry 1 Address	00000000000000000000000000000000000000	R/WO
1C4–1C7h	UESTS	Uncorrectable Error Status	0000000h	RO, R/WC/S
1C8–1CBh	UEMSK	Uncorrectable Error Mask	0000000h	RO, R/W/S
1CC-1CFh		Reserved	—	—
1D0–1D3h	CESTS	Correctable Error Status	00000000h	RO, R/WC/S
1D8–217h	—	Reserved	—	—
218–21Fh	PEGSSTS	PCI Express Sequence Status	0000000000000F FFh	RO
220–FFFh	—	Reserved	_	_

Table 5-1. Host-PCI Express Bridge Register Address Map (D1:F0) (Sheet 3 of 3)

5.1 **Configuration Register Details (D1:F0)**

5.1.1 VID1—Vendor Identification (D1:F0)

1
00h
8086h
RO
16 bits

This register combined with the Device Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO	Vendor Identification (VID1)
	8086 h	PCI standard identification for Intel.

5.1.2 DID1—Device Identification (D1:F0)

PCI Device:	1
Address Offset:	02h
Default Value:	2779h
Access:	RO
Size:	16 bits

This register combined with the Vendor Identification register uniquely identifies any PCI device.

Bit	Access & Default	Description
15:0	RO	Device Identification Number (DID1)
	2779h	Identifier assigned to the MCH device 1 (virtual PCI-to-PCI bridge, PCI Express x8 port).

5.1.3 PCICMD1—PCI Command (D1:F0)

1
04h
0000h
RO, R/W
16 bits

Bit	Access & Default	Description
15:11		Reserved

Bit	Access & Default	Description
10	R/W	INTA Assertion Disable
	0 b	0: This device is permitted to generate INTA interrupt messages.
		1: This device is prevented from generating interrupt messages.
		Any INTA emulation interrupts already asserted must be de-asserted when this bit is set.
		Only affects interrupts generated by the device (PCI INTA from a PME or Hot Plug event) controlled by this command register. It does not affect upstream MSIs, upstream PCI INTA-INTD asserts and de-assert messages.
9	RO	Fast Back-to-Back Enable (FB2B)
	0 b	Not Applicable or Implemented. Hardwired to 0.
8	R/W	SERR Message Enable (SERRE1)
	0 b	This bit is an enable bit for Device 1 SERR messaging. The MCH communicates the SERRB condition by sending an SERR message to the ICH7. This bit, when set, enables reporting of non-fatal and fatal errors to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI Express specific bits in the Device Control Register
		0: The SERR message is generated by the MCH for Device 1 only under conditions enabled individually through the Device Control Register.
		1: The MCH is enabled to generate SERR messages which will be sent to the ICH7 for specific Device 1 error conditions generated/detected on the primary side of the virtual PCI to PCI Express bridge (not those received by the secondary side). The error status is reported in the PCISTS1 register.
7		Reserved
6	R/WO	Parity Error Enable (PERRE)
	0 b	Controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set.
		0: Master Data Parity Error bit in PCI Status register cannot be set.
		1: Master Data Parity Error bit in PCI Status register can be set.
5	RO	VGA Palette Snoop
	0 b	Not Applicable or Implemented. Hardwired to 0.
4	RO	Memory Write and Invalidate Enable (MWIE)
	0 b	Not Applicable or Implemented. Hardwired to 0.
3	RO	Special Cycle Enable (SCE)
	0 b	Not Applicable or Implemented. Hardwired to 0.
2	R/W 0 b	Bus Master Enable (BME): controls the ability of the PCI Express x8 link port to forward memory and I/O Read/Write requests in the upstream direction
		 0: This device is prevented from making memory or IO requests to its primary bus. Note that according to PCI Specification, as MSI interrupt messages are in-band memory writes, disabling the bus master enable bit prevents this device from generating MSI interrupt messages or passing them from its secondary bus to its primary bus. Upstream memory writes/reads, IO writes/reads, peer writes/ reads, and MSIs will all be treated as invalid cycles. Writes are forwarded to memory address 0 with byte enables de-asserted. Reads will be forwarded to memory address 0 and will return Unsupported Request status (or Master abort) in its completion packet. 1: This device is allowed to issue requests to its primary bus. Completions for previously issued memory read requests on the primary bus will be issued when the data is available.
		This bit does not affect forwarding of Completions from the primary interface to the secondary interface.

Bit	Access & Default	Description
1	R/W	Memory Access Enable (MAE)
	0 b	0: All of device 1's memory space is disabled.
		1: Enable the Memory and Pre-fetchable memory address ranges defined in the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.
0	R/W	I/O Access Enable (IOAE)
	0 b	0: All of device 1's I/O space is disabled.
		1: Enable the I/O address range defined in the IOBASE1, and IOLIMIT1 registers.

5.1.4 PCISTS1—PCI Status (D1:F0)

PCI Device:	1
Address Offset:	06h
Default Value:	0010h
Access:	RO, R/WC
Size:	16 bits

This register reports the occurrence of error conditions associated with primary side of the "virtual" Host-PCI Express bridge embedded within the MCH.

Bit	Access & Default	Description	
15	RO	Detected Parity Error (DPE)	
	0 b	Not Applicable or Implemented. Hardwired to 0. Parity (generating poisoned TLPs) is not supported on the primary side of this device (The MCH does not do error forwarding).	
14	R/WC	Signaled System Error (SSE)	
	0 b	This bit is set when this Device sends an SERR due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the Command register is '1'. Both received (if enabled by BCTRL1[1]) and internally detected error messages do not affect this field.	
13	RO	Received Master Abort Status (RMAS)	
	0 b	Not Applicable or Implemented. Hardwired to 0. The concept of a master abort does not exist on primary side of this device.	
12	RO	Received Target Abort Status (RTAS)	
	0 b	Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.	
11	RO	Signaled Target Abort Status (STAS)	
	0 b	Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.	
10:9	RO	DEVSELB Timing (DEVT)	
	00 b	This device is not the subtractive decoded device on bus 0. This bit field is therefore hardwired to 00 to indicate that the device uses the fastest possible decode.	
8	RO	Master Data Parity Error (PMDPE)	
	0 Ь	Because the primary side of the PCI Express x8 lane's virtual PCI-to-PCI bridge is integrated with the MCH functionality there is no scenario where this bit will get set. Because hardware will never set this bit, it is impossible for software to have an opportunity to clear this bit or otherwise test that it is implemented. The PCI specification defines it as a R/WC, but for our implementation an RO definition behaves the same way and will meet all Microsoft testing requirements.	

Bit	Access & Default	Description
7	RO	Fast Back-to-Back (FB2B)
	0 b	Not Applicable or Implemented. Hardwired to 0.
6		Reserved
5	RO	66/60 MHz capability (CAP66)
	0 b	Not Applicable or Implemented. Hardwired to 0.
4	RO	Capabilities List
	1 b	Indicates that a capabilities list is present. Hardwired to 1.
3	RO	INTA Status
	0 b	Indicates that an interrupt message is pending internally to the device. Only PME and Hot Plug sources feed into this status bit (not PCI INTA-INTD assert and de- assert messages). The INTA Assertion Disable bit, PCICMD1[10], has no effect on this bit.
2:0		Reserved

5.1.5 RID1—Revision Identification (D1:F0)

PCI Device:	1
Address Offset:	08h
Default Value:	See description
Access:	RO
Size:	8 bits

This register contains the revision number of the MCH device 1. These bits are read only and writes to this register have no effect.

Bit	Access & Default	Description
7:0	RO	Revision Identification Number (RID1)
	00 h	Indicates the number of times that this device in this component has been "stepped" through the manufacturing process. It is always the same as the RID values in all other devices in this component. Refer to the <i>Intel® E7230 Chipset Specification Update</i> for the value of the Revision ID Register.

5.1.6 CC1—Class Code (D1:F0)

PCI Device:	1
Address Offset:	09h
Default Value:	060400h
Access:	RO
Size:	24 bits

This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface.

Bit	Access & Default	Description	
23:16	RO	Base Class Code (BCC)	
	06 h	Indicates the base class code for this device. This code has the value 06h, indicating a Bridge device.	
15:8	RO	Sub-Class Code (SUBCC)	
	04 h	Indicates the sub-class code for this device. The code is 04h indicating a PCI to PCI Bridge.	
7:0	RO	Programming Interface (PI)	
	00 h	Indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.	

5.1.7 CL1—Cache Line Size (D1:F0)

PCI Device:	1
Address Offset:	0Ch
Default Value:	00h
Access:	R/W
Size:	8 bits

Bit	Access & Default	Description	
7:0	R/W	Cache Line Size (Scratch pad)	
	00 h	Implemented by PCI Express devices as a read-write field for legacy compatibility purposes but has no impact on any PCI Express device functionality.	

5.1.8 HDR1—Header Type (D1:F0)

PCI Device:	1
Address Offset:	0Eh
Default Value:	01h
Access:	RO
Size:	8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Access & Default	Description
7:0	RO	Header Type Register (HDR)
	01 h	Returns 01 to indicate that this is a single function device with bridge header layout.

5.1.9 PBUSN1—Primary Bus Number (D1:F0)

PCI Device:	1
Address Offset:	18h
Default Value:	00h
Access:	RO
Size:	8 bits

This register identifies that this "virtual" Host-PCI Express bridge is connected to PCI bus 0.

T	Bit	Access & Default	Description	
Γ	7:0	RO	Primary Bus Number (BUSN)	
		00 h	Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since device 1 is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.	

5.1.10 SBUSN1—Secondary Bus Number (D1:F0)

PCI Device:	1
Address Offset:	19h
Default Value:	00h
Access:	RO
Size:	8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" bridge i.e. to PCI Express x8 link. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express x8 link.

Bit	Access & Default	Description
7:0	R/W	Secondary Bus Number (BUSN)
	00 h	This field is programmed by configuration software with the bus number assigned to PCI Express x8 link.

5.1.11 SUBUSN1—Subordinate Bus Number (D1:F0)

PCI Device:	1
Address Offset:	1Ah
Default Value:	00h
Access:	R/W
Size:	8 bits

This register identifies the subordinate bus (if any) that resides at the level below PCI Express x8 link. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express x8 link.

Bit	Access & Default	Description
7:0	R/W	Subordinate Bus Number (BUSN)
	00 h	This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the device 1 bridge. When only a single PCI device resides on the PCI Express x8 link segment, this register will contain the same value as the SBUSN1 register.

5.1.12 IOBASE1—I/O Base Address (D1:F0)

PCI Device:	1
Address Offset:	1Ch
Default Value:	F0h
Access:	RO
Size:	8 bits

This register controls the CPU to PCI Express x8 link I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only upper 4 bits are programmable. For the purpose of address decode address bits A [11:0] are treated as 0. Thus the bottom of the defined I/O address range will be aligned to a 4 KB boundary.

Bit	Access & Default	Description
7:4	R/W	I/O Address Base (IOBASE)
	Fh	Corresponds to A [15:12] of the I/O addresses passed by bridge 1 to PCI Express x8 link. BIOS must not set this register to 00h otherwise 0CF8h/0CFCh accesses will be forwarded to the PCI Express hierarchy associated with this device.
3:0		Reserved

5.1.13 IOLIMIT1—I/O Limit Address (D1:F0)

PCI Device:	1
Address Offset:	1Dh
Default Value:	00h
Access:	R/W
Size:	8 bits

This register controls the CPU to PCI Express x8 link I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only upper 4 bits are programmable. For the purposes of address decode address bits A [11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4 KB aligned address block.

Bit	Access & Default	Description
7:4	R/W	I/O Address Limit (IOLIMIT)
	0 h	Corresponds to A[15:12] of the I/O address limit of device 1. Devices between this upper limit and IOBASE1 will be passed to the PCI Express hierarchy associated with this device.
3:0		Reserved

5.1.14 SSTS1—Secondary Status (D1:F0)

PCI Device:	1
Address Offset:	1Eh
Default Value:	00h
Access:	RO, R/W/C
Size:	16 bits

SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (i.e., PCI Express x8 link side) of the "virtual" PCI-PCI Bridge embedded within MCH.

Bit	Access & Default	Description
15	R/WC	Detected Parity Error (DPE):
	0 b	When set indicates that the MCH received across the link (upstream) a Posted Write Data Poisoned TLP (EP=1)
14	R/WC	Received System Error (RSE)
	0 b	This bit is set when the secondary side sends an ERR_FATAL or ERR_NONFATAL message due to an error detected by the secondary side, and the SERR Enable bit in the Bridge Control register is '1'.
13	R/WC	Received Master Abort (RMA)
	0 b	This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Unsupported Request Completion Status.
12	R/WC	Received Target Abort (RTA)
	0 b	This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Completer Abort Completion Status.

Bit	Access & Default	Description	
11	RO	Signaled Target Abort (STA)	
	0 b	Not Applicable or Implemented. Hardwired to 0. The MCH does not generate Target Aborts (the MCH will never complete a request using the Completer Abort Completion status).	
10:9	RO	DEVSELB Timing (DEVT)	
	00 b	Not Applicable or Implemented. Hardwired to 0.	
8		Reserved	
7	RO	Fast Back-to-Back (FB2B)	
	0 b	Not Applicable or Implemented. Hardwired to 0.	
6		Reserved	
5	RO	66/60 MHz capability (CAP66)	
	0 b	Not Applicable or Implemented. Hardwired to 0.	
4:0		Reserved	

5.1.15 MBASE1—Memory Base Address (D1:F0)

PCI Device:	1
Address Offset:	20h
Default Value:	FFF0h
Access:	R/W
Size:	16 bits

This register controls the CPU to PCI Express x8 link non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE \le address \le MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A [31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes when read. The configuration software must initialize this register. For the purpose of address decode address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access & Default	Description
15:4	R/W	Memory Address Base (MBASE)
	FFF h	Corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express x8 link.
3:0		Reserved

5.1.16 MLIMIT1—Memory Limit Address (D1:F0)

PCI Device:	1
Address Offset:	22h
Default Value:	0000h
Access:	R/W
Size:	16 bit

This register controls the CPU to PCI Express x8 link non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE \le address \le MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A [31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes when read. The configuration software must initialize this register. For the purpose of address decode address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note: Memory range covered by MBASE and MLIMIT registers are used to map non-pre-fetchable PCI Express x8 link address ranges and PMBASE and PMLIMIT are used to map pre-fetchable address ranges.

This segregation allows application of USWC space attribute to be performed in a true plug-andplay manner to the pre-fetchable address range for improved CPU-PCI Express memory access performance.

Note: Also that configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges i.e. prevent overlap with each other and/or with the ranges covered with the main memory. There is no provision in the MCH hardware to enforce prevention of overlap and operations of the system in the case of overlap are not guaranteed.

Bit	Access & Default	Description
15:4	R/W	Memory Address Limit (MLIMIT)
	000 h	Corresponds to A[31:20] of the upper limit of the address range passed to PCI Express x8 link.
3:0		Reserved

5.1.17 PMBASE1—Prefetchable Memory Base Address (D1:F0)

l
24h
FFF1h
RO, R/W
l 6 bits

This register in conjunction with the corresponding Upper Base Address register controls the CPU to PCI Express x8 link prefetchable memory access routing based on the following formula: PREFETCHABLE MEMORY BASE ≤ address ≤ PREFETCHABLE MEMORY LIMIT The upper 12 bits of this register are read/write and correspond to address bits A [31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A [39:32] of the 40-bit address. The configuration software must initialize this register. For the purpose of address decodes address bits A [19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access & Default	Description
15:4	R/W	Prefetchable Memory Base Address (MBASE)
	FFF h	Corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express x8 link.
3:0	RO	64-bit Address Support
	1h	This field indicates that the upper 32-bits of the prefetchable memory region limit address are contained in the Prefetchable Memory Base Limit Address Register (offset 2Ch).

5.1.18 PMLIMIT1—Prefetchable Memory Limit Address (D1:F0)

PCI Device:	1
Address Offset:	26h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

This register in conjunction with the corresponding Upper Limit Address register controls the CPU to PCI Express x8 link prefetchable memory access routing based on the following formula: PREFETCHABLE MEMORY BASE ≤ Address ≤ PREFETCHABLE MEMORY LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A [31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A [39:32] of the 40-bit address. The configuration software must initialize this register. For the purpose of address decodes address bits A [19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block. Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e. prefetchable) from the CPU perspective.

Bit	Access & Default	Description
15:4	R/W 000 h	Prefetchable Memory Address Limit (PMLIMIT) Corresponds to A[31:20] of the upper limit of the address range passed to PCI Express x8 link.
3:0	RO 0 h	64-bit Address Support Indicates the bridge 32-bit address support only

5.1.19 PMBASEU1—Prefetchable Memory Base Address

PCI Device:	1
Address Offset:	28-2Bh
Default Value:	000000Fh
Access:	R/W;
Size:	32 bits

This register in conjunction with the corresponding Upper Base Address register controls the CPU to PCI Express x8 link prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ Address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

Bit	Access	Description
31:4		Reserved
3:0	R/W	Prefetchable Memory Base Address (MBASEU): Corresponds to A[35:32] of the lower limit of the prefetchable memory range that will be passed to PCI Express x8 link.

5.1.20 PMLIMITU1—Prefetchable Memory Limit Address

PCI Device:	1
Address Offset:	2C-2Fh
Default Value:	0000000h
Access:	R/W;
Size:	32 bits

This register in conjunction with the corresponding Upper Limit Address register controls the CPU to PCI Express x8 link prefetchable memory access routing based on the following formula:

```
PREFETCHABLE\_MEMORY\_BASE \leq Address \leq PREFETCHABLE\_MEMORY\_LIMIT
```

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note that prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e. prefetchable) from the CPU perspective.

Bit	Access	Description
31:4		Reserved
3:0	R/W	Prefetchable Memory Address Limit (MLIMITU): Corresponds to A[35:32] of the upper limit of the prefetchable Memory range that will be passed to PCI Express x8 link.

CAPPTR1—Capabilities Pointer (D1:F0) 5.1.21

PCI Device:	1
Address Offset:	34h
Default Value:	88h
Access:	RO
Size:	8 bits

The capabilities pointer provides the address offset to the location of the first entry in this device's linked list of capabilities.

Bit	Access & Default	Description
7:0	RO	First Capability (CAPPTR1)
	88h	The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability.

INTRLINE1—Interrupt Line (D1:F0) 5.1.22

PCI Device:	1
Address Offset:	3Ch
Default Value:	00h
Access:	R/W
Size:	8 bits

This register contains interrupt line routing information. The device itself does not use this value; rather device drivers and operating systems to determine priority and vector information use it.

Bit	Access & Default	Description
7:0	R/W 00 h	Interrupt Connection. Used to communicate interrupt line routing information. POST software writes the routing information into this register as it initializes and configures the system. The value in this register indicates which input of the system interrupt controller this device's interrupt pin is connected to.

INTRPIN1—Interrupt Pin (D1:F0) 5.1.23

PCI Device:	1
Address Offset:	3Dh
Default Value:	01h
Access:	RO
Size:	8 bits

This register specifies which interrupt pin this device uses.

Bit	Access & Default	Description
7:0	RO 01 h	Interrupt Pin. As a single function device, the PCI Express device specifies INTA as its interrupt pin. 01h=INTA.

5.1.24 BCTRL1—Bridge Control (D1:F0)

PCI Device:	1
Address Offset:	3Eh
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

This register provides extensions to the PCICMD1 register that are specific to PCI-PCI bridges. The BCTRL provides additional control for the secondary interface (i.e. PCI Express x8 link) as well as some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge embedded within MCH, e.g. VGA compatible address ranges mapping.

Bit	Access & Default	Description
15:12		Reserved
11	RO	Discard Timer SERR Enable
	0 b	Not Applicable or Implemented. Hardwired to 0.
10	RO	Discard Timer Status
	0 b	Not Applicable or Implemented. Hardwired to 0.
9	RO	Secondary Discard Timer
	0 b	Not Applicable or Implemented. Hardwired to 0.
8	RO	Primary Discard Timer
	0 b	Not Applicable or Implemented. Hardwired to 0.
7	RO	Fast Back-to-Back Enable (FB2BEN)
	0 b	Not Applicable or Implemented. Hardwired to 0.
6	R/W	Secondary Bus Reset (SRESET)
	0 b	Setting this bit triggers a hot reset on the corresponding PCI Express Port.
5	RO	Master Abort Mode (MAMODE)
	0 b	When acting as a master, unclaimed reads that experience a master abort returns all 1's and any writes that experience a master abort completes normally and the data is thrown away. Hardwired to 0.
4	R/W	VGA 16-bit Decode
	0 b	Enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address precluding the decoding of alias addresses every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also set to 1, enabling VGA I/O decoding and forwarding by the bridge.
		0 : Execute 10-bit address decodes on VGA I/O accesses.
		1 : Execute 16-bit address decodes on VGA I/O accesses.
3	R/W	VGA Enable (VGAEN)
	0 b	Controls the routing of CPU initiated transactions targeting VGA compatible I/O and memory address ranges. See the VGAEN/MDAP table in Device 0, offset 97h[0].

Bit	Access & Default	Description
2	R/W	ISA Enable (ISAEN)
	0 b	Needed to exclude legacy resource decode to route ISA resources to legacy decode path. Modifies the response by the MCH to an I/O access issued by the CPU that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.
		0: All addresses defined by the IOBASE and IOLIMIT for CPU I/O transactions will be mapped to PCI Express x8 link.
		 MCH will not forward to PCI Express x8 link any I/O transactions addressing the last 768 bytes in each 1 KB block even if the addresses are within the range defined by the IOBASE and IOLIMIT registers. Instead of going to PCI Express x8 link these cycles will be forwarded to DMI where they can be subtractively or positively claimed by the ISA bridge.
1	R/W	SERR Enable (SERREN)
	0 b	 No forwarding of error messages from secondary side to primary side that could result in an SERR.
		1: ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR message when individually enabled by the Root Control register.
0	RO	Parity Error Response Enable (PEREN)
	0 b	Controls whether or not the Master Data Parity Error bit in the Secondary Status register is set when the MCH receives across the link (upstream) a Read Data Completion Poisoned TLP
		0: Master Data Parity Error bit in Secondary Status register cannot be set.
		1: Master Data Parity Error bit in Secondary Status register can be set.

5.1.25 PM_CAPID1—Power Management Capabilities (D1:F0)

PCI Device:	1
Address Offset:	80h
Default Value:	C8029001h
Access:	RO
Size:	32 bits

Bit	Access & Default	Description
31:27	RO	PME Support
	19 h	This field indicates the power states in which this device may indicate PME wake via PCI Express messaging. D0, D3hot & D3cold. This device is not required to do anything to support D3hot & D3cold; it simply must report that those states are supported. Refer to the PCI Power Management 1.1 specification for encoding explanation and other power management details.
26	RO	D2
	0 b	Hardwired to 0 to indicate that the D2 power management state is NOT supported.
25	RO	D1
	0 b	Hardwired to 0 to indicate that the D1 power management state is NOT supported.
24:22	RO	Auxiliary Current
	000 b	Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary current requirements.
21	RO	Device Specific Initialization (DSI)
	0 b	Hardwired to 0 to indicate that special initialization of this device is NOT required before generic class device driver is to use it.
20	RO	Auxiliary Power Source (APS)
	0 b	Hardwired to 0.

Bit	Access & Default	Description	
19	RO	PME Clock	
	0 b	Hardwired to 0 to indicate this device does NOT support PMEB generation.	
18:16	RO	PCI PM CAP Version	
	010 b	Hardwired to 02h to indicate there are 4 bytes of power management registers implemented and that this device complies with revision 1.1 of the <i>PCI Power Management Interface Specification</i> .	
15:8	RO	Pointer to Next Capability	
	90h / A0h	This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled Interrupts (MSI) capability at 90h. If MSICH (CAPL[0] @ 7Fh) is 1, then the next item in the capabilities list is the PCI Express capability at A0h.	
7:0	RO	Capability ID	
	01 h	Value of 01h identifies this linked list item (capability structure) as being for PCI Power Management registers.	

5.1.26 PM_CS1—Power Management Control/Status (D1:F0)

PCI Device:	1
Address Offset:	84h
Default Value:	00000000h
Access:	RO, R/W
Size:	32 bits

Bit	Access & Default	Description	
31:16		Reserved	
15	RO	PME Status	
	0 b	Indicates that this device does not support PMEB generation from D3 _{cold} .	
14:13	RO	Data Scale	
	00 b	Indicates that this device does not support the power management data register.	
12:9	RO	Data Select	
	0 h	Indicates that this device does not support the power management data register.	
8	R/W/S	PME Enable	
	0 b	Indicates that this device does not generate PMEB assertion from any D-state.	
		0: PMEB generation not possible from any D State	
		1: PMEB generation enabled from any D State	
		The setting of this bit has no effect on hardware.	
		See PM_CAP[15:11]	
7:2		Reserved	

Bit	Access & Default	Description
1:0	R/W	Power State
	00 b	Indicates the current power state of this device and can be used to set the device into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs.
		00: D0
		01: D1 (Not supported in this device.)
		10: D2 (Not supported in this device.)
		11: D3
		Support of D3 _{cold} does not require any special action.
		While in the D3 _{hot} state, this device can only act as the target of PCI configuration transactions (for power management control). This device also cannot generate interrupts or respond to MMR cycles in the D3 state. The device must return to the D0 state in order to be fully functional.
		There is no hardware functionality required to support these Power States.

5.1.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities (D1:F0)

PCI Device:	1
Address Offset:	88h
Default Value:	0000800Dh
Access:	RO
Size:	32 bits

This capability is used to uniquely identify the subsystem where the PCI device resides. Because this device is an integrated part of the system and not an add-in device, it is anticipated that this capability will never be used. However, it is necessary because Microsoft will test for its presence.

Bit	Access & Default	Description	
31:16		Reserved	
15:8	RO	Pointer to Next Capability	
	80h	This contains a pointer to the next item in the capabilities list which is the PCI Power Management capability.	
7:0	RO	Capability ID	
	0D h	Value of 0Dh identifies this linked list item (capability structure) as being for SSID/ SSVID registers in a PCI-to-PCI Bridge.	

5.1.28 SS—Subsystem ID and Subsystem Vendor ID (D1:F0)

1
8Ch
00008086h
RO
32 bits

System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be preserved through power management transitions and hardware reset.

Bit	Access & Default	Description	
31:16	R/WO	Subsystem ID (SSID)	
	0000 h	Identifies the particular subsystem and is assigned by the vendor.	
15:0	R/WO	Subsystem Vendor ID (SSVID)	
	8086 h	Identifies the manufacturer of the subsystem and is the same as the vendor ID which is assigned by the PCI Special Interest Group.	

5.1.29 MSI_CAPID—Message Signaled Interrupts Capability ID (D1:F0)

PCI Device:	1
Address Offset:	90h
Default Value:	A005h
Access:	RO
Size:	16 bits

When a device supports MSI it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address.

The reporting of the existence of this capability can be disabled by setting MSICH (CAPL [0] @ 7Fh). In that case walking this linked list will skip this capability and instead go directly from the PCI PM capability to the PCI Express capability.

Bit	Access & Default	Description	
15:8	RO	Pointer to Next Capability	
	A0 h	This contains a pointer to the next item in the capabilities list which is the PCI Express capability.	
7:0	RO	Capability ID	
	05 h	Value of 05h identifies this linked list item (capability structure) as being for MSI registers.	

5.1.30 MC—Message Control (D1:F0)

PCI Device:	1
Address Offset:	92h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

System software can modify bits in this register, but the device is prohibited from doing so.

If the device writes the same message multiple times, only one of those messages is guaranteed to be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one.

Bit	Access & Default	Description
15:8		Reserved
7	RO	64-bit Address Capable
	0 b	Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address.
6:4	R/W	Multiple Message Enable (MME)
	000 b	System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested.
		The encoding is the same as for the MMC field below.
3:1	RO	Multiple Message Capable (MMC)
	000 b	System software reads this field to determine the number of messages being requested by this device.
		Value: Number of Messages Requested
		000: 1
		All other's are reserved in this implementation: 001: Reserved
		010: Reserved
		011: Reserved
		100: Reserved 101: Reserved
		110: Reserved
		111: Reserved
0	R/W	MSI Enable (MSIEN) Controls the ability of this device to generate MSIs.
	0 b	0: MSI will not be generated.
		1: MSI will be generated when we receive PME or HotPlug messages. INTA will not be generated and INTA Status (PCISTS1[3]) will not be set.

5.1.31 MA—Message Address (D1:F0)

PCI Device:	1
Address Offset:	94h
Default Value:	0000000h
Access:	RO, R/W
Size:	32 bits

Bit	Access & Default	Description
31:2	R/W	Message Address
	00000000 h	Used by system software to assign an MSI address to the device.
		The device handles an MSI by writing the padded contents of the MD register to this address.
1:0	RO	Force DWord Align
	00 b	Hardwired to 0 so that addresses assigned by system software are always aligned on a Dword address boundary.

5.1.32 MD—Message Data (D1:F0)

PCI Device:	1
Address Offset:	98h
Default Value:	0000h
Access:	R/W
Size:	16 bits

Bit	Access & Default	Description
15:0	R/W	Message Data
	0000 h	Base message data pattern assigned by system software and used to handle an MSI from the device.
		When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA register. The upper 16 bits are always set to 0 This register supplies the lower 16 bits.

5.1.33 PCI_EXPRESS_CAPL—PCI Express x8 link Capability List (D1:F0)

PCI Device:	1
Address Offset:	A0h
Default Value:	0010h
Access:	RO
Size:	16 bits

Enumerates the PCI Express x8 link capability structure.

Bit	Access & Default	Description
15:8	RO	Pointer to Next Capability
	00 h	This value terminates the capabilities list. The Virtual Channel capability and any other PCI Express specific capabilities that are reported via this mechanism are in a separate capabilities list located entirely within PCI Express Extended Configuration space.
7:0	RO	Capability ID
	10 h	Identifies this linked list item (capability structure) as being for PCI Express registers.

5.1.34 PCI_EXPRESS_CAP—PCI Express x8 link Capabilities (D1:F0)

PCI Device:	1
Address Offset:	A2h
Default Value:	0141h
Access:	RO; R/WO
Size:	16 bits

Indicates PCI Express device capabilities.

Bit	Access & Default	Description	
15:14		Reserved	
13:9	RO	Interrupt Message Number	
	00 h	Not Applicable or Implemented. Hardwired to 0.	
8	R/WO	Slot Implemented	
	1 b	0: The PCI Express Link associated with this port is connected to an integrated component or is disabled.	
		1: The PCI Express x8 link associated with this port is connected to a slot.	
		BIOS must initialize this field appropriately if a slot connection is not implemented.	
7:4	RO	Device/Port Type	
	4 h	Hardwired to 0100b to indicate root port of PCI Express Root Complex.	
3:0	RO	PCI Express Capability Version	
	1 h	Hardwired to 1 as it is the first version.	

5.1.35 DCAP—Device Capabilities (D1:F0)

PCI Device:	1
Address Offset:	A4h
Default Value:	0000000h
Access:	RO
Size:	32 bits

Indicates PCI Express link capabilities.

Bit	Access & Default	Description	
31:6		Reserved	
5	RO	Extended Tag Field Supported	
	0 b	Hardwired to indicate support for 5-bit Tags as a Requestor.	
4:3	RO	Phantom Functions Supported	
	00 b	Not Applicable or Implemented. Hardwired to 0.	
2:0	RO	Max Payload Size	
	000 b	Hardwired to indicate 128B maximum supported payload for Transaction Layer Packets (TLP).	

5.1.36 DCTL—Device Control (D1:F0)

PCI Device:	1
Address Offset:	A8h
Default Value:	0000h
Access:	R/W
Size:	16 bits

Provides control for PCI Express device specific capabilities.

Note: The error reporting enable bits are in reference to errors detected by this device, not error messages received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root Port Command Register.

Bit	Access & Default	Description	
15:8		Reserved	
7:5	R/W	Max Payload Size	
	000 b	 128B maximum supported payload for Transaction Layer Packets (TLP). As a receiver, the Device must handle TLPs as large as the set value; as transmitter, the Device must not generate TLPs exceeding the set value. 001-111: Reserved. 	
4		Reserved	
3	R/W	Unsupported Request Reporting Enable	
	0 b	When set Unsupported Requests will be reported.	
		Note that reporting of error messages received by Root Port is controlled exclusively by Root Control register.	

Bit	Access & Default	Description	
2	R/W	Fatal Error Reporting Enable	
	0 b	When set fatal errors will be reported. For a Root Port, the reporting of fatal errors is internal to the root. No external ERR_FATAL message is generated.	
1	R/W	Non-Fatal Error Reporting Enable	
	0 b	When set non-fatal errors will be reported. For a Root Port, the reporting of non- fatal errors is internal to the root. No external ERR_NONFATAL message is generated. Uncorrectable errors can result in degraded performance.	
0	R/W	Correctable Error Reporting Enable	
	0 b	When set correctable errors will be reported. For a Root Port, the reporting of correctable errors is internal to the root. No external ERR_CORR message is generated.	

5.1.37 DSTS—Device Status (D1:F0)

PCI Device:	1
Address Offset:	AAh
Default Value:	0000h
Access:	RO
Size:	16 bits

Reflects status corresponding to controls in the Device Control register.

Note: The error reporting bits are in reference to errors detected by this device, not errors messages received across the link.

Bit	Access & Default	Description	
15:6		Reserved	
5	RO	Transactions Pending	
	0 b	0: All pending transactions (including completions for any outstanding non-posted requests on any used virtual channel) have been completed.	
		1: Indicates that the device has transaction(s) pending (including completions for any outstanding non-posted requests for all used Traffic Classes).	
4		Reserved	
3	R/WC	Unsupported Request Detected	
	0 b	When set this bit indicates that the Device received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control Register.	
2	R/WC	Fatal Error Detected	
	0 b	When set this bit indicates that fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	
1	R/WC	Non-Fatal Error Detected	
	0 b	When set this bit indicates that non-fatal error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	
0	R/WC	Correctable Error Detected	
	0 b	When set this bit indicates that correctable error(s) were detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	

5.1.38 LCAP—Link Capabilities (D1:F0)

PCI Device:	1
Address Offset:	ACh
Default Value:	02012D01h
Access:	R/WO
Size:	16 bits

Indicates PCI Express device specific capabilities.

Bit	Access & Default	Description	
31:24	RO	Port Number	
	02 h	Indicates the PCI Express port number for the given PCI Express link. Matches the value in Element Self Description [31:24].	
23:18		Reserved	
17:15	R/WO	L1 Exit Latency	
	010 b	Indicates the length of time this Port requires to complete the transition from L1 to L0. The value 010 b indicates the range of 2 μ s to less than 4 μ s. If this field is required to be any value other than the default, BIOS must initialize it accordingly.	
		Both bytes of this register that contain a portion of this field must be written simultaneously in order to prevent an intermediate (and undesired) value from ever existing.	
14:12	R/WO	L0s Exit Latency	
	010 b	Indicates the length of time this Port requires to complete the transition from L0s to L0. The value 010 b indicates the range of 128 ns to less than 256 ns. If this field is required to be any value other than the default, BIOS must initialize it accordingly.	
11:10	RO	Active State Link PM Support	
	11 b	L0s & L1 entry supported.	
9:4	RO	Max Link Width	
	10 h	Hardwired to indicate x8.	
		When Force x1 mode is enabled on this PCI Express x8 link device, this field reflects x1 (01h).	
3:0	RO	Max Link Speed	
	1 h	Hardwired to indicate 2.5 Gb/s.	

5.1.39 LCTL—Link Control (D1:F0)

PCI Device:	1
Address Offset:	B0h
Default Value:	0000h
Access:	RO, R/W
Size:	16 bits

Allows control of PCI Express link.

Bit	Access & Default	Description
15:7		Reserved

Bit	Access & Default	Description	
6	R/W	Common Clock Configuration	
	0 b	0: Indicates that this component and the component at the opposite end of this Link are operating with asynchronous reference clock.	
		1: Indicates that this component and the component at the opposite end of this Link are operating with a distributed common reference clock.	
		Components utilize this common clock configuration information to report the correct L0s and L1 Exit Latencies.	
5	R/W	Retrain Link	
	0 b	0: Normal operation	
		1: Full Link retraining is initiated by directing the Physical Layer LTSSM from L0, L0s, or L1 states to the Recovery state.	
		This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0).	
4	R/W	Link Disable	
	0 b	0: Normal operation	
		1: Link is disabled. Forces the LTSSM to transition to the Disabled state (via Recovery) from L0, L0s, or L1 states.	
		Link retraining happens automatically on 0 to 0 transition, just like when coming out of reset. Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state.	
3	RO	Read Completion Boundary (RCB)	
	0 b	Hardwired to 0 to indicate 64 byte.	
2		Reserved	
1:0	R/W	Active State PM	
	00 b	Controls the level of active state power management supported on the given link.	
		00: Disabled	
		01: L0s Entry Supported 10: Reserved	
		11: LOs and L1 Entry Supported	

5.1.40 LSTS—Link Status (D1:F0)

PCI Device:	1
Address Offset:	B2h
Default Value:	1001h
Access:	RO
Size:	16 bits

Indicates PCI Express link status.

Bit	Access & Default	Description
15:13		Reserved
12	RO	Slot Clock Configuration
	1 b	0: The device uses an independent clock irrespective of the presence of a reference on the connector.
		1: The device uses the same physical reference clock that the platform provides on the connector.

Bit	Access & Default	Description	
11	RO	Link Training	
	0 b	Indicates that Link training is in progress. Hardware clears this bit once Link training is complete.	
10	RO	Training Error	
	0 b	This bit is set by hardware upon detection of unsuccessful training of the Link to the L0 Link state.	
9:4	RO	Negotiated Width	
	00 h	Indicates negotiated link width	
		00h: Reserved	
		01h: x1	
		04h: x4	
		08h: x8	
		10h: Reserved	
		All other encodings are reserved.	
3:0	RO	Negotiated Speed	
	1 h	Indicates negotiated link speed.	
		1h: 2.5 Gb/s	
		All other encodings are reserved.	

5.1.41 SLOTCAP—Slot Capabilities (D1:F0)

PCI Device:	1
Address Offset:	B4h
Default Value:	0000000h
Access:	R/WO
Size:	32 bits

PCI Express slot-related registers allow for the support of Hot-Plug.

Bit	Access & Default	Description	
31:19	R/WO	Physical Slot Number	
	0000 h	Indicates the physical slot number attached to this Port.	
		This field must be initialized by BIOS to a value that assigns a slot number that is globally unique within the chassis.	
18:17		Reserved	
16:15	R/WO	Slot Power Limit Scale	
	00 b	Specifies the scale used for the Slot Power Limit Value.	
		00 = 1.0x 01 = 0.1x 10 = 0.01x 11 = 0.001x	
		If this field is written, the link sends a Set_Slot_Power_Limit message.	
14:7	R/WO	Slot Power Limit Value	
	00 h	In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. Power limit (in Watts) is calculated by multiplying the value in this field by the value in the Slot Power Limit Scale field. If this field is written, the link sends a Set_Slot_Power_Limit message.	

Bit	Access & Default	Description
6	R/WO	Hot-plug Capable
	0 b	Indicates that this slot is capable of supporting Hot-plug operations.
5	R/WO	Hot-plug Surprise
	0 b	Indicates that a device present in this slot might be removed from the system without any prior notification.
4	R/WO	Power Indicator Present
	0 b	Indicates that a Power Indicator is implemented on the chassis for this slot.
3	R/WO	Attention Indicator Present
	0 b	Indicates that an Attention Indicator is implemented on the chassis for this slot.
2:1		Reserved
0	R/WO	Attention Button Present
	0 b	Indicates that an Attention Button is implemented on the chassis for this slot. The Attention Button allows the user to request hot-plug operations.

5.1.42 SLOTCTL—Slot Control (D1:F0)

PCI Device:	1
Address Offset:	B8h
Default Value:	01C0h
Access:	R/W
Size:	16 bits

PCI Express slot related registers allow for the support of Hot-Plug.

Bit	Access & Default	Description	
15:10		Reserved	
9:8	R/W	Power Indicator Control	
	01 b	Reads to this register return the current state of the Power Indicator.	
		Writes to this register set the Power Indicator and cause the Port to send the appropriate POWER_INDICATOR_* messages.	
		00: Reserved 01: On 10: Blink 11: Off	
7:6	R/W	Attention Indicator Control	
	11 b	Reads to this register return the current state of the Attention Indicator.	
		Writes to this register set the Attention Indicator and cause the Port to send the appropriate ATTENTION_INDICATOR_* messages.	
		00: Reserved	
		01: On 10: Blink	
		11: Off	
5	R/W	Hot plug Interrupt Enable	
	0 b	When set enables generation of hot plug interrupt on enabled hot plug events.	
4	R/W	Command Completed Interrupt Enable	
	0 b	When set enables the generation of hot plug interrupt when the Hot plug controller completes a command.	

Bit	Access & Default	Description	
3	R/W	Presence Detect Changed Enable	
	0 b	When set enables the generation of hot plug interrupt or wake message on a presence detect changed event.	
2:1		Reserved	
0	R/W	Attention Button Pressed Enable	
	0 b	When set enables the generation of hot plug interrupt or wake message on an attention button pressed event.	

5.1.43 SLOTSTS—Slot Status (D1:F0)

PCI Device:	1
Address Offset:	BAh
Default Value:	0000h
Access:	RO, R/W/C
Size:	16 bits

PCI Express slot-related registers allow for the support of Hot-Plug.

Bit	Access & Default	Description
15:7		Reserved
6	RO	Presence Detect State
	0 b	Indicates the presence of a card in the slot.
		0: Slot Empty 1: Card Present in slot.
5		Reserved
4	R/WC	Command Completed
	0 b	Set when the hot plug controller completes an issued command.
3	R/WC	Presence Detect Changed
	0 b	Set when a Presence Detect change is detected. This corresponds to an edge on the signal that corresponds to bit 6 of this register (Presence Detect State).
2:1		Reserved
0	R/WC	Attention Button Pressed
	0 b	Set when the Attention Button is pressed.

5.1.44 RCTL—Root Control (D1:F0)

PCI Device:	1
Address Offset:	BCh
Default Value:	0000h
Access:	R/W
Size:	16 bits

Allows control of PCI Express Root Complex specific parameters. The system error control bits in this register determine if corresponding SERRs are generated when our device detects an error (reported in this device's Device Status register) or when an error message is received across the link. Reporting of SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command Register.

Bit	Access & Default	Description	
15:4		Reserved	
3	R/W	PME Interrupt Enable	
	0 b	0: No interrupts are generated as a result of receiving PME messages.	
		 Enables interrupt generation upon receipt of a PME message as reflected in the PME Status bit of the Root Status Register. A PME interrupt is also generated if the PME Status bit of the Root Status Register is set when this bit is set from a cleared state. 	
2	R/W	System Error on Fatal Error Enable	
	0 b	Controls the Root Complex's response to fatal errors.	
		0: No SERR generated on receipt of fatal error.	
		1: Indicates that an SERR should be generated if a fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.	
1	R/W	System Error on Non-Fatal Uncorrectable Error Enable	
	0 b	Controls the Root Complex's response to non-fatal errors.	
		0: No SERR generated on receipt of non-fatal error.	
		1: Indicates that an SERR should be generated if a non-fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.	
0	R/W	System Error on Correctable Error Enable	
	0 b	Controls the Root Complex's response to correctable errors.	
		0: No SERR generated on receipt of correctable error.	
		1: Indicates that an SERR should be generated if a correctable error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.	

5.1.45 RSTS—Root Status (D1:F0)

PCI Device:	1
Address Offset:	C0h
Default Value:	0000000h
Access:	RO, R/W/C
Size:	32 bits

Provides information about PCI Express Root Complex specific parameters.

Bit	Access & Default	Description	
31:18		Reserved	
17	RO	PME Pending	
	0 b	Indicates that another PME is pending when the PME Status bit is set. When the PME Status bit is cleared by software; the PME is delivered by hardware by setting the PME Status bit again and updating the Requestor ID appropriately. The PME pending bit is cleared by hardware if no more PMEs are pending.	
16	R/W/C	PME Status	
	0 b	Indicates that the requestor ID indicated in the PME Requestor ID field asserted PME. Subsequent PMEs are kept pending until the status register is cleared by writing a 1 to this field.	
15:0	RO	PME Requestor ID	
	0000 h	Indicates the PCI requestor ID of the last PME requestor.	

5.1.46 PCI_EXPRESS_LC—PCI Express x8 link Legacy Control

PCI Device:	1
Address Offset:	ECh
Default Value:	00000000h
Access:	RO, R/W
Size:	32 bits

Controls functionality that is needed by Legacy (non-PCI Express aware) Operating Systems during run time.

Bit	Access & Default	Description	
31:3		Reserved	
2	R/W	PME GPE Enable (PMEGPE)	
	0 b	0: Do not generate GPE PME message when PME is received.	
		1: Generate a GPE PME message when PME is received (Assert_PMEGPE and Deassert_PMEGPE messages on DMI). This enables the MCH to support PMEs on the PCI Express x8 link port under legacy OSs.	
1	R/W	Hot-Plug GPE Enable (HPGPE)	
	0 b	0: Do not generate GPE Hot-Plug message when Hot-Plug event is received.	
		1: Generate a GPE Hot-Plug message when Hot-Plug Event is received (Assert_HPGPE and Deassert_HPGPE messages on DMI). This enables the MCH to support Hot-Plug on the PCI Express x8 link port under legacy OSs.	

Bit	Access & Default	Description	
0	R/W	General Message GPE Enable (GENGPE)	
	0 b	0: Do not forward received GPE assert/deassert messages.	
		 Forward received GPE assert/deassert messages. These general GPE message can be received via the PCI Express x8 link port from an external Intel® device (i.e. Intel® 6702PXH 64-bit PCI Hub) and will be subsequently forwarded to the ICH7 (via Assert_GPE and Deassert_GPE messages on DMI). For example, an Intel® 6702PXH 64-bit PCI Hub might send this message if a PCI Express device is hot plugged into an Intel® 6702PXH 64-bit PCI Hub port. 	

5.1.47 VCECH—Virtual Channel Enhanced Capability Header (D1:F0)

1
100h
14010002h
RO
32 bits

Indicates PCI Express device Virtual Channel capabilities.

Note that extended capability structures for PCI Express devices are located in PCI Express extended configuration space and have different field definitions than standard PCI capability structures.

Bit	Access & Default	Description	
31:20	RO	Pointer to Next Capability	
	140 h	The Link Declaration Capability is the next in the PCI Express extended capabilities list.	
19:16	RO	PCI Express Virtual Channel Capability Version	
	1 h	Hardwired to 1 to indicate compliances with the 1.0a version of the PCI Express specification.	
15:0	RO	Extended Capability ID	
	0002 h	Value of 0002 h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers.	

5.1.48 PVCCAP1—Port VC Capability Register 1 (D1:F0)

PCI Device:	1
Address Offset:	104h
Default Value:	0000001h
Access:	RO, R/WO
Size:	32 bits

Describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access & Default	Description
31:7		Reserved

Bit	Access & Default	Description	
6:4	RO	Low Priority Extended VC Count	
	000 b	Indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration.	
		The value of 0 in this field implies strict VC arbitration.	
3		Reserved	
2:0	R/WO	Extended VC Count	
	001 b	Indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device.	
		BIOS Requirement: Set this field to 000b for all configurations. VC1 is not a POR feature.	

5.1.49 PVCCAP2—Port VC Capability Register 2 (D1:F0)

PCI Device:	1
Address Offset:	108h
Default Value:	00000001h
Access:	RO
Size:	32 bits

Describes the configuration of PCI Express Virtual Channels associated with this port.

Bit	Access & Default	Description
31:24	RO	VC Arbitration Table Offset
	00 h	Indicates the location of the VC Arbitration Table. This field contains the zero-based offset of the table in DQWORDS (16 bytes) from the base address of the Virtual Channel Capability Structure. A value of 0 indicates that the table is not present (due to fixed VC priority).
23:8		Reserved
7:0	RO	VC Arbitration Capability
	01 h	Indicates that the only possible VC arbitration scheme is hardware fixed (in the root complex).
		VC1 is the highest priority, VC0 is the lowest priority.

5.1.50 PVCCTL—Port VC Control (D1:F0)

PCI Device:	1
Address Offset:	10Ch
Default Value:	0000h
Access:	R/W
Size:	16 bits

Bit	Access & Default	Description
15:4		Reserved

Bit	Access & Default	Description
3:1	R/W	VC Arbitration Select
	000 b	This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. The value 001b when written to this field will indicate the VC arbitration scheme is hardware fixed (in the root complex).
		This field can not be modified when more than one VC in the LPVC group is enabled.
0		Reserved

5.1.51 VC0RCAP—VC0 Resource Capability (D1:F0)

PCI Device:	1
Address Offset:	110h
Default Value:	0000000h
Access:	RO
Size:	32 bits

Bit	Access & Default	Description
31:16		Reserved
15	RO	Reject Snoop Transactions
	0 b	 Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC.
		1: Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request.
14:0		Reserved

5.1.52 VC0RCTL—VC0 Resource Control (D1:F0)

PCI Device:	1
Address Offset:	114h
Default Value:	800000FFh
Access:	RO, R/W
Size:	32 bits

Controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access & Default	Description
31	RO	VC0 Enable
	1 b	For VC0 this is hardwired to 1 and read only as VC0 can never be disabled.
30:27		Reserved
26:24	RO	VC0 ID
	000 b	Assigns a VC ID to the VC resource. For VC0 this is hardwired to 0 and read only.
23:8		Reserved

int_{el}.

Bit	Access & Default	Description
7:1	R/W	TC/VC0 Map
	7F h	Indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO	TC0/VC0 Map
	1 b	Traffic Class 0 is always routed to VC0.

5.1.53 VC0RSTS—VC0 Resource Status (D1:F0)

PCI Device:	1
Address Offset:	11Ah
Default Value:	0002h
Access:	RO
Size:	16 bits

Reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2		Reserved
1	RO	VC0 Negotiation Pending
	1 b	0: The VC negotiation is complete.
		1: The VC resource is still in the process of negotiation (initialization or disabling).
		This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state
		Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0		Reserved

5.1.54 VC1RCAP—VC1 Resource Capability (D1:F0)

PCI Device:	1
Address Offset:	11Ch
Default Value:	00008000h
Access:	RO
Size:	32 bits

Bit	Access & Default	Description
31:16		Reserved

Bit	Access & Default	Description
15	RO	Reject Snoop Transactions
	1 b	 Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC.
		 Any transaction without the No Snoop bit set within the TLP header will be rejected as an Unsupported Request.
14:0		Reserved

5.1.55 VC1RCTL—VC1 Resource Control (D1:F0)

PCI Device:	1
Address Offset:	120h
Default Value:	0100000h
Access:	RO, R/W
Size:	32 bits

Controls the resources associated with PCI Express Virtual Channel 1.

Bit	Access & Default	Description	
31	R/W	VC1 Enable	
	0 b	0: Virtual Channel is disabled.	
		1: Virtual Channel is enabled. See exceptions in note below.	
		Software must use the VC Negotiation Pending bit to check whether the VC negotiation is complete. When VC Negotiation Pending bit is cleared, a 1 read from this VC Enable bit indicates that the VC is enabled (Flow Control Initialization is completed for the PCI Express port); a 0 read from this bit indicates that the Virtual Channel is currently disabled.	
		Notes	
		To enable a Virtual Channel, the VC Enable bits for that Virtual Channel must be set in both Components on a Link.	
		To disable a Virtual Channel, the VC Enable bits for that Virtual Channel must be cleared in both Components on a Link.	
		Software must ensure that no traffic is using a Virtual Channel at the time it is disabled.	
		Software must fully disable a Virtual Channel in both Components on a Link before re-enabling the Virtual Channel.	
		BIOS Requirement: This field must not be set to 1b. VC1 is not a POR feature.	
30:27		Reserved	
26:24	R/W	VC1 ID	
	001 b	Assigns a VC ID to the VC resource. Assigned value must be non-zero.	
		This field cannot be modified when the VC is already enabled.	
23:8		Reserved	
7:1	R/W	ТС/VС1 Мар	
	00 h	Indicate the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.	
0	RO	TC0/VC1 Map	
	0 b	Traffic Class 0 is always routed to VC0.	

5.1.56 VC1RSTS—VC1 Resource Status (D1:F0)

PCI Device:	1
Address Offset:	126h
Default Value:	0002h
Access:	RO
Size:	16 bits

Reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2		Reserved
1	RO	VC1 Negotiation Pending
	1 b	0: The VC negotiation is complete.
		1: The VC resource is still in the process of negotiation (initialization or disabling).
		This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state
		Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0		Reserved

5.1.57 RCLDECH—Root Complex Link Declaration Enhanced Capability Header (D1:F0)

PCI Device:	1
Address Offset:	140h
Default Value:	00010005h
Access:	RO
Size:	32 bits

This capability declares links from this element (PCI Express x8 link) to other elements of the root complex component to which it belongs. See the PCI Express specification for link/topology declaration requirements.

Bit	Access & Default	Description
31:20	RO	Pointer to Next Capability
	000 h	This is the last capability in the PCI Express extended capabilities list
19:16	RO	Link Declaration Capability Version
	1 h	Hardwired to 1 to indicate compliances with the 1.0a version of the PCI Express specification.
15:0	RO	Extended Capability ID
	0005 h	Value of 0005 h identifies this linked list item (capability structure) as being for PCI Express Link Declaration Capability.

Note: See corresponding Egress Port Link Declaration Capability registers for diagram of Link Declaration Topology.

5.1.58 ESD—Element Self Description (D1:F0)

1
144h
02000100h
RO, R/WO
32 bits

Provides information about the root complex element containing this Link Declaration Capability.

Bit	Access & Default	Description
31:24	RO	Port Number
	02 h	Specifies the port number associated with this element with respect to the component that contains this element. The egress port of the component to provide arbitration to this Root Complex Element utilizes this port number value.
23:16	R/WO	Component ID
	00 h	Identifies the physical component that contains this Root Complex Element. Component IDs start at 1.
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.
15:8	RO	Number of Link Entries
	01 h	Indicates the number of link entries following the Element Self Description. This field reports 1 (to Egress port only as we don't report any peer-to-peer capabilities in our topology).
7:4		Reserved
3:0	RO	Element Type
	0 h	Indicates the type of the Root Complex Element.
		Value of 0 h represents a root port.

5.1.59 LE1D—Link Entry 1 Description (D1:F0)

PCI Device:	1
Address Offset:	150h
Default Value:	0000000h
Access:	RO, R/WO
Size:	32 bits

First part of a Link Entry, which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description	
31:24	RO	Target Port Number	
	00 h	Specifies the port number associated with the element targeted by this link entry (Egress Port). The target port number is with respect to the component that contains this element as specified by the target component ID.	
23:16	R/WO	Target Component ID	
	00 h	Identifies the physical or logical component that is targeted by this link entry. A value of 0 is reserved; Component IDs start at 1.	
		This value is a mirror of the value in the Component ID field of all elements in this component. The value only needs to be written in one of the mirrored fields and it will be reflected everywhere that it is mirrored.	

Bit	Access & Default	Description
15:2		Reserved
1	RO 0 b	Link Type Indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.
0	R/WO 0 b	Link Valid 0: Link Entry is not valid and will be ignored. 1: Link Entry specifies a valid link.

5.1.60 LE1A—Link Entry 1 Address (D1:F0)

PCI Device:	1
Address Offset:	158h
Default Value:	00000000000000000h
Access:	R/WO
Size:	64 bits

Second part of a Link Entry, which declares an internal link to another Root Complex Element.

Bit	Access & Default	Description
63:32		Reserved
31:12	R/WO 0 0000 h	Link Address Memory mapped base address of the RCRB that is the target element (Egress Port) for this link entry.
11:0		Reserved

5.1.61 UESTS—Uncorrectable Error Status (D1:F0)

0/1/0/MMR
1C4-1C7h
00000000h
RO; R/WC/S
32 bits

Reports error status of individual error sources on a PCI Express device. An individual error status bit that is set indicates that a particular error occurred. Software may clear an error status by writing a 1 to the respective bit.

Bit	Access & Default	Description
31:21		Reserved
20	R/WC/S 0 b	Unsupported Request Error Status
19		Reserved
18	R/WC/S 0 b	Malformed TLP Status

Bit	Access & Default	Description
17	R/WC/S 0 b	Receiver Overflow Status
16	R/WC/S 0 b	Unexpected Completion Status
15		Reserved
14	R/WC/S 0 b	Completion Timeout Status
13:5		Reserved
4	R/WC/S 0 b	Data Link Protocol Error Status (DLPES): The Data Link Layer Protocol Error that causes this bit to be set will also cause the Fatal Error Detected bit in Device Status[2] to be set if not already set.
3:0		Reserved

5.1.62 UEMSK—Uncorrectable Error Mask (D1:F0)

B/D/F/Type:	0/1/0/MMR
Address Offset:	1C8-1CBh
Default Value:	0000000h
Access:	RO; R/W/S
Size:	32 bits

Controls reporting of individual errors by the device (or logic associated with this port) to the PCI Express Root Complex. As these errors are not originating on the other side of a PCI Express link, no PCI Express error message is sent, but the unmasked error is reported directly to the root control logic. A masked error (respective bit set to 1 in the mask register) has no action taken. There is a mask bit per error bit of the Uncorrectable Error Status register.

Bit	Access & Default	Description
31:21		Reserved
20	R/W/S 0 b	Unsupported Request Error Mask 0 = Not Masked 1 = Masked
19:0		Reserved

5.1.63 CESTS—Correctable Error Status (D1:F0)

B/D/F/Type:	0/1/0/MMR
Address Offset:	1D0-1D3h
Default Value:	00000000h
Access:	RO; R/WC/S
Size:	32 bits

Reports error status of individual error sources on a PCI Express device. An individual error status bit that is set indicates that a particular error occurred. Software may clear an error status by writing a 1 to the respective bit.

Bit	Access & Default	Description	
31:13		Reserved	
12	R/WC/S 0 b	Replay Timer Timeout Status 0 = Error did Not occur 1 = Error occurred	
11:9		Reserved	
8	R/WC/S 0 b	Replay Number Rollover Status 0 = Error did Not occur 1 = Error occurred	
7	R/WC/S 0 b	Bad DLLP Status 0 = Error did Not occur 1 = Error occurred	
6	R/WC/S 0 b	Bad TLP Status 0 = Error did Not occur 1 = Error occurred	
5:1		Reserved	
0	R/WC/S 0 b	Receiver Error Status (RES): Receiver Errors will be indicated due to all of the following: 8b/10b Decode Errors, Framing Errors, Lane Deskew Errors, and Elasticity Buffer Overflow/Underflow. 0 = Error did Not occur 1 = Error occurred	

5.1.64 **PEGSSTS—PCI Express x8 link Sequence Status (D1:F0)**

PCI Express status reporting that is required by the PCI Express specification.

	Bit	Access & Default	Description
I	63:60		Reserved

Bit	Access & Default	Description
59:48	RO	Next Transmit Sequence Number
	000 h	Value of the NXT_TRANS_SEQ counter. This counter represents the transmit Sequence number to be applied to the next TLP to be transmitted onto the Link for the first time.
47:44		Reserved
43:32	RO	Next Packet Sequence Number
	000 h	Packet sequence number to be applied to the next TLP to be transmitted or re- transmitted onto the Link.
31:28		Reserved
27:16	RO	Next Receive Sequence Number
	000 h	This is the sequence number associated with the TLP that is expected to be received next.
15:12		Reserved
11:0	RO	Last Acknowledged Sequence Number
	FFF h	This is the sequence number associated with the last acknowledged TLP.

§

6 Direct Media Interface (DMI) RCRB

This Root Complex Register Block (RCRB) controls the MCH-to-ICH7 serial interconnect. The base address of this space is programmed in DMIBAR in device #0 config space. Table 6-1 provides an address map of the DMI registers listed in by address offset in ascending order. Section 6.1 provides a detailed bit description of the registers.

IMPORTANT: All RCRB register spaces needs to remain organized as they are here.

Table 6-1. DMI Register Address Map

Address Offset	Symbol	Register Name	PCI Dev #	Access
000–003h	DMIVCECH	DMI Virtual Channel Enhanced Capability Header	DMIBAR	RO
004–007h	DMIPVCCAP1	DMI Port VC Capability Register 1	DMIBAR	RO
008–00Bh	DMIPVCCAP2	DMI Port VC Capability Register 2	DMIBAR	RO
00C-00Dh	DMIPVCCTL	DMI Port VC Control	DMIBAR	RO
00E-00Fh	_	Reserved	—	—
010–013h	DMIVC0RCAP	DMI VC0 Resource Capability	DMIBAR	RO
014–017h	DMIVC0RCTL	DMI VC0 Resource Control	DMIBAR	RO, R/W
018–019h	—	Reserved	—	—
01A–01B h	DMIVCORSTS	DMI VC0 Resource Status	DMIBAR	RO
01C–01F h	DMIVC1RCAP	DMI VC1 Resource Capability	DMIBAR	RO
020–023h	DMIVC1RCTL	DMI VC1 Resource Control	DMIBAR	RO, R/W
024–025h	_	Reserved	—	—
026–027h	DMIVC1RSTS	DMI VC1 Resource Status	DMIBAR	RO
028–083h	—	Reserved	-	—
084–087h	DMILCAP	DMI Link Capabilities	DMIBAR	RO, R/WO
088–089h	DMILCTL	DMI Link Control	DMIBAR	R/W
08A-08Bh	DMILSTS	DMI Link Status	DMIBAR	RO
08C– 1C7h	_	Reserved	—	—
1C8–1CBh	DMIUEMSK	DMI Uncorrectable Error Mask	DMIBAR	RO, R/W/S
1CC-FFFh	_	Reserved	—	—

6.1 DMI RCRB Configuration Register Details

6.1.1 DMIVCECH—DMI Virtual Channel Enhanced Capability Header

MMIO Range:	DMIBAR
Address Offset:	000h
Default Value:	04010002h
Access:	RO
Size:	32 bits

Indicates DMI Virtual Channel capabilities.

Bit	Access & Default	Description	
31:20	RO	Pointer to Next Capability	
	040 h	Indicates the next item in the list.	
19:16	RO	Capability Version	
	1 h	Indicates support as a version 1 capability structure.	
15:0	RO	Capability ID	
	0002 h	Indicates this is the Virtual Channel capability item.	

6.1.2 DMIPVCCAP1—DMI Port VC Capability Register 1

MMIO Range:	DMIBAR
Address Offset:	004h
Default Value:	0000001h
Access:	RO
Size:	32 bits

Describes the configuration of Virtual Channels associated with this port.

Bit	Access & Default	Description
31:12		Reserved
11:10	RO 00b	Port Arbitration Table Entry Size (PATS) Indicates the size of the port arbitration table is 4 bits (to allow up to 8 ports).
9:8	RO 00b	Reference Clock (RC) Fixed at 10 ns.
7		Reserved
6:4	RO 000 b	Low Priority Extended VC Count (LPEVC) — Indicates that there are no additional VCs of low priority with extended capabilities.
3		Reserved
2:0	R/WO 001 b	Extended VC Count Indicates that there is one additional VC (VC1) that exists with extended capabilities.

6.1.3 DMIPVCCAP2—DMI Port VC Capability Register 2

MMIO Range:	DMIBAR
Address Offset:	008h
Default Value:	0000001h
Access:	RO
Size:	32 bits

Describes the configuration of Virtual Channels associated with this port.

Bit	Access & Default	Description
31:24	RO	VC Arbitration Table Offset (ATO)
	00 h	Indicates that no table is present for VC arbitration since it is fixed.
23:8		Reserved
7:0	RO	VC Arbitration Capability
	01 h	Indicates that the VC arbitration is fixed in the root complex. VC1 is highest priority and VC0 is lowest priority.

6.1.4 DMIPVCCTL—DMI Port VC Control

MMIO Range:	DMIBAR
Address Offset:	00Ch
Default Value:	0000h
Access:	RO
Size:	16 bits

Bit	Access & Default	Description
15:4		Reserved
3:1	R/W 000 b	VC Arbitration Select Indicates which VC should be programmed in the VC arbitration table. The root complex takes no action on the setting of this field since there is no arbitration table.
0		Reserved

6.1.5 DMIVCORCAP—DMI VC0 Resource Capability

MMIO Range:	DMIBAR
Address Offset:	010h
Default Value:	0000001h
Access:	RO
Size:	32 bits

Bit	Access & Default	Description
31:23		Reserved
22:16	RO 00 h	Maximum Time Slots (MTS) This VC implements fixed arbitration, and therefore this field is not used.

Bit	Access & Default	Description
15	RO	Reject Snoop Transactions (RTS)
	0 b	This VC must be able to take snoopable transactions.
14:8		Reserved
7:0	RO	Port Arbitration Capability (PAC)
	01 h	Indicates that this VC uses fixed port arbitration.

6.1.6 DMIVC0RCTL0—DMI VC0 Resource Control

MMIO Range:	DMIBAR
Address Offset:	014h
Default Value:	800000FEh
Access:	RO, R/W
Size:	32 bits

Controls the resources associated with PCI Express Virtual Channel 0.

Bit	Access & Default	Description
31	RO	Virtual Channel Enable (EN)
	1 b	Enables the VC when set. Disables the VC when cleared.
30:27		Reserved
26:24	RO	Virtual Channel Identifier (ID)
	000 b	Indicates the ID to use for this virtual channel.
23:20		Reserved
19:17	R/W	Port Arbitration Select (PAS)
	0 h	Indicates which port table is being programmed. The root complex takes no action on this setting since the arbitration is fixed and there is no arbitration table.
16:8		Reserved
7:1	R/W	Transaction Class / Virtual Channel Map (TVM) — RW. Indicates which
	7F h	transaction classes are mapped to this virtual channel. When a bit is set, this transaction class is mapped to the virtual channel.
0		Reserved

6.1.7 DMIVCORSTS—DMI VC0 Resource Status

MMIO Range:	DMIBAR
Address Offset:	01Ah
Default Value:	0002h
Access:	RO
Size:	16 bits

Reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2		Reserved
1	RO 1 b	VC Negotiation Pending (NP) When set, indicates the virtual channel is still being negotiated with ingress ports.
0		Reserved

6.1.8 DMIVC1RCAP—DMI VC1 Resource Capability

MMIO Range:]
Address Offset:	(
Default Value:	(
Access:]
Size:	

DMIBAR 01Ch 00008001h RO 32 bits

Bit	Access & Default	Description
31:16		Reserved
15	RO 1 b	Reject Snoop Transactions (RTS) All snoopable transactions on VC1 are rejected. This VC is for isochronous transfers only.
14:8		Reserved
7:0	RO 01 h	Port Arbitration Capability (PAC) Indicates the port arbitration capability is time-based WRR of 128 phases.

6.1.9 DMIVC1RCTL1—DMI VC1 Resource Control

h

Controls the resources associated with Virtual Channel 1.

Bit	Access & Default	Description
31	R/W	Virtual Channel Enable (EN)
	0 b	R/W. Enables the VC when set. Disables the VC when cleared.

Bit	Access & Default	Description	
30:27	RO	Reserved	
	0 h		
26:24	R/W	Virtual Channel Identifier (ID)	
	001 b	Indicates the ID to use for this virtual channel.	
23:20		Reserved	
19:17	R/W	Port Arbitration Select (PAS)	
	0 h	Indicates which port table is being programmed. The only permissible value of this field is 4h for the time-based WRR entries.	
16:8		Reserved	
7:1	R/W	Transaction Class / Virtual Channel Map (TVM)	
	00 h	Indicates which transaction classes are mapped to this virtual channel. When a bit is set, this transaction class is mapped to the virtual channel.	
0		Reserved	

6.1.10 DMIVC1RSTS—DMI VC1 Resource Status

MMIO Range:	DMIBAR
Address Offset:	026h
Default Value:	0000h
Access:	RO
Size:	16 bits

Reports the Virtual Channel specific status.

Bit	Access & Default	Description
15:2		Reserved
1	RO	VC Negotiation Pending (NP)
	0 b	When set, indicates the virtual channel is still being negotiated with ingress ports.
0		Reserved

6.1.11 DMILCAP—DMI Link Capabilities

MMIO Range:	DMIBAR
Address Offset:	084h
Default Value:	00012C41h
Access:	RO, R/WO
Size:	32 bits

Indicates DMI specific capabilities.

Bit	Access & Default	Description
31:18		Reserved
17:15	R/WO 010 b	L1 Exit Latency (EL1) L1 not supported on DMI.

Bit	Access & Default	Description
14:12	R/WO	L0s Exit Latency (EL0)
	010 b	This field indicates that exit latency is 128 ns to less than 256 ns.
11:10	RO	Active State Link PM Support (APMS)
	11 b	Indicates that L0s is supported on DMI.
9:4	RO	Maximum Link Width (MLW)
	4 h	Indicates the maximum link width is 4 ports.
3:0	RO	Maximum Link Speed (MLS)
	1 h	Indicates the link speed is 2.5 Gb/s.

6.1.12 DMILCTL—DMI Link Control

MMIO Range:	DMIBAR
Address Offset:	088h
Default Value:	0000h
Access:	R/W
Size:	16 bits

Allows control of DMI.

Bit	Access & Default	Description
15:8		Reserved
7	R/W	Extended Synch (ES)
	0 h	When set, forces extended transmission of FTS ordered sets when exiting L0s prior to entering L0 and extra TS1 sequences at exit from L1 prior to entering L0.
6:2		Reserved
1:0	R/W	Active State Link PM Control (APMC)
	00 b	Indicates whether DMI should enter L0s.
		00 = Disabled
		01 = L0s entry enabled
		10 = Reserved
		11 = Reserved

6.1.13 DMILSTS—DMI Link Status

MMIO Range:	DMIBAR
Address Offset:	08Ah
Default Value:	0001h
Access:	RO
Size:	16 bits

This register indicates DMI status.

Bit	Access & Default	Description
15:10		Reserved

Bit	Access & Default	Description
9:4	RO 00 h	Negotiated Link Width (NLW) Negotiated link width is x4 (000100b).
3:0	RO 1 h	Link Speed (LS) Link is 2.5 Gb/s.

6.1.14 DMIUEMSK—DMI Uncorrectable Error Mask

B/D/F/Type:	0/0/0/DMIBAR
Address Offset:	1C8-1CBh
Default Value:	00000000h
Access:	RO; R/W/S;
Size:	32 bits

This register controls reporting of individual uncorrectable errors over DMI. A masked error (respective bit set to 1 in the mask register) has no action taken. There is a mask bit per error bit of the DMIUESTS Register.

Bit	Access & Default	Description
31:21		Reserved
20	R/W/S 0 b	Unsupported Request Error Mask 0: Not Masked 1: Masked
19:0		Reserved

§

int_{el} 7 System Address Map

The MCH supports 64 GB of addressable memory space and 64 KB+3 bytes of addressable I/O space. A programmable memory address space under the 1 MB region is divided into regions which can be individually controlled with programmable attributes such as Disable, Read/Write, Write Only, or Read Only. This section focuses on how the memory space is partitioned and what the separate memory regions are used for. I/O address space has simpler mapping and is explained near the end of this section.

Addressing of memory ranges larger than 4 GB is supported. The HREQ[4:3] FSB pins are decoded to determine whether the access is above or below 4 GB.

The MCH does support PCI Express x8 link port upper prefetchable base/limit registers. This allows the PCI Express x8 link to claim I/O accesses above 32 bit. Addressing of greater than 4 GB is allowed on both the DMI Interface and PCI Express interface. The Intel E7230 MCH supports a maximum of 8 GB of DRAM, no DRAM memory will be accessible above 12 GB. DRAM capacity is limited by the number of address pins available. There is no hardware lock to prevent the situation where more memory than is addressable is inserted.

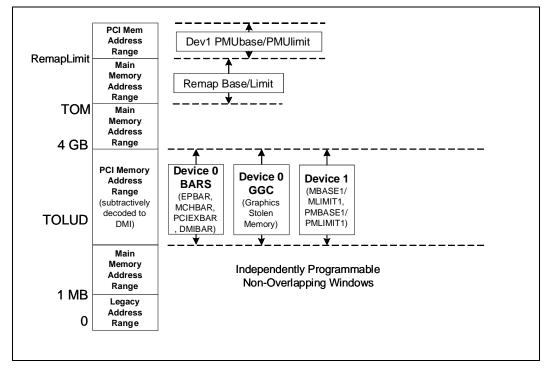
In the following sections, it is assumed that all of the compatibility memory ranges reside on the DMI. The exception to this rule is VGA ranges, which may be mapped to PCI Express, DMI. In the absence of more specific references, cycle descriptions referencing PCI should be interpreted as the DMI/PCI, while cycle descriptions referencing PCI Express are related to the PCI Express bus. The TOLUD register is set to the appropriate value by BIOS. The remapbase/remaplimit registers remap logical accesses bound for addresses above 4 G onto physical addresses that fall within DRAM.

The Address Map includes a number of programmable ranges:

1. Device 0:

- A. EPBAR Egress port registers. Necessary for setting up VC1 as an isochronous channel using time based weighted round robin arbitration. (4 KB window)
- B. MCHBAR Memory mapped range for internal MCH registers. For example, memory buffer register controls. (16 KB window)
- C. PCIEXBAR Flat memory-mapped address space to access device configuration registers. This mechanism can be used to access PCI configuration space (0-FFh) and Extended configuration space (100h-FFFh) for PCI Express devices. This enhanced configuration access mechanism is defined in the PCI Express specification. (64 MB, 128 MB, or 256 MB window)
- D. DMIBAR This window is used to access registers associated with the MCH/ICH7 (DMI) register memory range. (4 KB window)
- E. IFPBAR Any write to this window will trigger a flush of the MCH's Global Write Buffer to let software guarantee coherency between writes from an isochronous agent and writes from the CPU (4 KB window).

Device 1, Function 0:

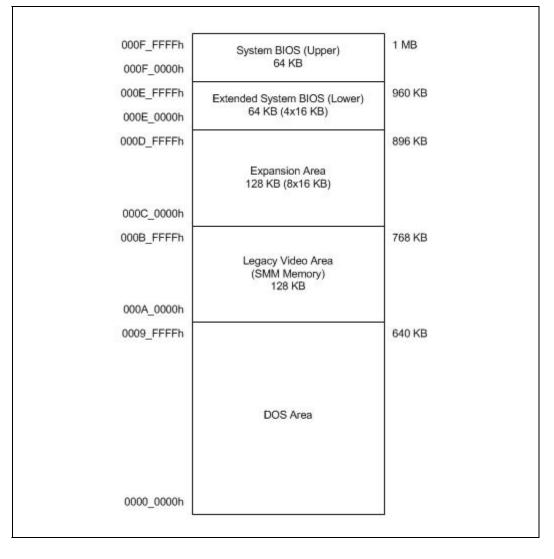

- A. MBASE1/MLIMIT1 PCI Express port non-prefetchable memory access window.
- B. PMBASE1/PMLIMIT1 PCI Express port prefetchable memory access window.
- C. IOBASE1/IOLIMIT1 PCI Express port I/O access window.

The rules for the above programmable ranges are:

- ALL of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or system designer's responsibility to limit memory population so that adequate PCI, PCI Express, High BIOS, PCI Express Memory Mapped space, and APIC memory space can be allocated.
- In the case of overlapping ranges with memory, the memory decode will be given priority.
- There are NO Hardware Interlocks to prevent problems in the case of overlapping ranges.
- Accesses to overlapped ranges may produce indeterminate results.
- The only peer-to-peer cycles allowed below the top of memory (register TOLUD) are DMI to PCI Express VGA range writes.

Figure 7-1 represents system memory address map in a simplified form.

Figure 7-1. System Address Ranges



7.1 Legacy Address Range

This area is divided into the following address regions:

- 0 640 KB DOS Area
- 640 768 KB Legacy Video Buffer Area
- 768 896 KB in 16 KB sections (total of 8 sections) Expansion Area
- 896 960 KB in 16 KB sections (total of 4 sections) Extended System BIOS Area
- 960 KB 1 MB Memory System BIOS Area

Figure 7-2. Microsoft MS-DOS* Legacy Address Range

7.1.1 DOS Range (0h – 9_FFFFh)

The DOS area is 640 KB (0000_0000h – 0009_FFFFh) in size and is always mapped to the main memory controlled by the MCH.

7.1.2 Legacy Video Area (A_0000h-B_FFFh)

The legacy 128 KB VGA memory range, frame buffer, (000A_000h – 000B_FFFFh) can be mapped to PCI Express (Device #1), and/or to the DMI. The appropriate mapping depends on which devices are enabled and the programming of the VGA steering bits. Based on the VGA steering bits, priority for VGA mapping is constant. The MCH always decodes internally mapped devices first. Internal to the MCH. The MCH always positively decodes internally mapped devices, PCI Express. Subsequent decoding of regions mapped to PCI Express or the DMI depends on the Legacy VGA configuration bits (VGA Enable & MDAP); see LAC Register (Device 0, offset 97h). This region is also the default for SMM space.

Compatible SMRAM Address Range (A_0000h-B_FFFFh)

When compatible SMM space is enabled, SMM-mode CPU accesses to this range are routed to physical system DRAM at 000A 0000h - 000B FFFFh. Non-SMM-mode CPU accesses to this range are considered to be to the Video Buffer Area as described above. PCI Express and DMI originated cycles to enabled SMM space are not allowed and are considered to be to the Video Buffer Area. PCI Express and DMI initiated cycles are attempted as Peer cycles, and will master abort on PCI if no external VGA device claims them.

Monochrome Adapter (MDA) Range (B_0000h-B_7FFFh)

Legacy support requires the ability to have a second graphics controller (monochrome) in the system. Accesses in the standard VGA range are forwarded to PCI Express, or the DMI (depending on configuration bits). Since the monochrome adapter may be mapped to any one of these devices, the MCH must decode cycles in the MDA range (000B_0000h - 000B_7FFFh) and forward either to PCI Express, or the DMI. This capability is controlled by a VGA steering bits and the legacy configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the MCH decodes IO cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3BAh and 3BFh and forwards them to the either PCI Express, and/or the DMI.

PCI Express 16-bit VGA Decode

In the *PCI to PCI Bridge Architecture Specification Revision 1.2*, it is required that 16-bit VGA decode be a feature. The VGA 16-bit decode: originally was described in an ECR to the *PCI to PCI Bridge Architecture Specification Revision 1.1*. This is now listed as a required feature in the updated 1.2 specification.

7.1.3 Expansion Area (C_0000h-D_FFFFh)

This 128-KB ISA Expansion region (000C_0000h - 000D_FFFFh) is divided into eight 16-KB segments (see Table 7-1). Each segment can be assigned one of four Read/Write states: read-only, write-only, read/write, or disabled. Typically, these blocks are mapped through MCH and are subtractively decoded to ISA space. Memory that is disabled is not remapped.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Memory Segments	Attributes	Comments
0C0000h - 0C3FFFh	WE (Write Enable) RE (Read Enable)	Add-on BIOS
0C4000h - 0C7FFFh	WE RE	Add-on BIOS
0C8000h - 0CBFFFh	WE RE	Add-on BIOS
0CC000h - 0CFFFFh	WE RE	Add-on BIOS
0D0000h - 0D3FFFh	WE RE	Add-on BIOS
0D4000h - 0D7FFFh	WE RE	Add-on BIOS
0D8000h - 0DBFFFh	WE RE	Add-on BIOS
0DC000h - 0DFFFFh	WE RE	Add-on BIOS

Table 7-1. Expansion Area Memory Segments

7.1.4 Extended System BIOS Area (E_0000h-E_FFFFh)

This 64-KByte area $(000E_0000h - 000E_FFFFh)$ is divided into four, 16-KB segments (see Table 7-2). Each segment can be assigned independent read and write attributes so it can be mapped either to main DRAM or to the DMI. Typically, this area is used for RAM or ROM. Memory segments that are disabled are not remapped elsewhere.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Table 7-2. Extended System BIOS Area Memory Segments

Memory Segments	Attributes	Comments
0E0000h - 0E3FFFh	WE RE	BIOS Extension
0E4000h - 0E7FFFh	WE RE	BIOS Extension
0E8000h - 0EBFFFh	WE RE	BIOS Extension
0EC000h - 0EFFFFh	WE RE	BIOS Extension

7.1.5 System BIOS Area (F_0000h-F_FFFh)

This area is a single 64-KB segment $(000F_0000h - 000F_FFFFh)$. This segment can be assigned read and write attributes. It is by default (after reset) Read/Write disabled and cycles are forwarded to the DMI. By manipulating the Read/Write attributes, the MCH can "shadow" BIOS into the main DRAM. When disabled, this segment is not remapped.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Table 7-3. System BIOS Area Memory Segments

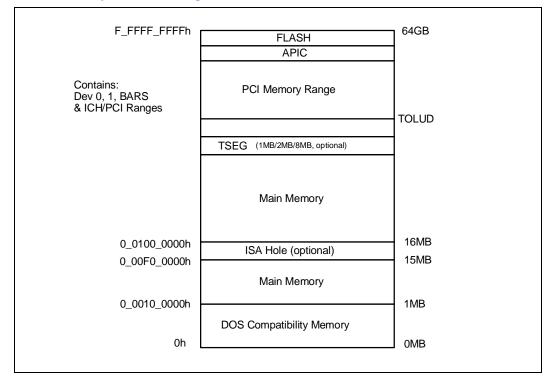
Memory Segments	Attributes	Comments
0F0000H - 0FFFFFH	WE RE	BIOS Area

int

7.1.6 **Programmable Attribute Map (PAM) Memory Area Details**

The 13 sections from 768 KB to 1 MB comprise what is also known as the PAM Memory Area.

The MCH does not handle IWB (Implicit Write-Back) cycles targeting DMI. Since all memory residing on DMI should be set as non-cacheable, there will normally not be IWB cycles targeting DMI.


However, DMI becomes the default target for CPU and DMI originated accesses to disabled segments of the PAM region. If the MTRRs covering the PAM regions are set to WB or RC it is possible to get IWB cycles targeting DMI. This may occur for DMI originated cycles to disabled PAM regions.

For example, say that a particular PAM region is set for "Read Disabled" and the MTRR associated with this region is set to WB. A DMI master generates a memory read targeting the PAM region. A snoop is generated on the FSB and the result is an IWB. Since the PAM region is "Read Disabled" the default target for the Memory Read becomes DMI. The IWB associated with this cycle will cause the MCH to hang.

7.2 Main Memory Address Range (1 MB to TOLUD)

This address range (see Table 7-3) extends from 1 MB to the top of physical memory that is permitted to be accessible by the MCH (as programmed in the TOLUD register). All accesses to addresses within this range will be forwarded by the MCH to the DRAM unless they fall into the optional TSEG or optional ISA Hole.

7.2.1 ISA Hole (15 MB-16 MB)

A hole can be created at 15 MB–16 MB as controlled by the fixed hole enable bit in the LAC register (Device 0, offset 97h). Accesses within this hole are forwarded to the DMI. The range of physical DRAM memory disabled by opening the hole is not remapped to the top of the memory – that physical DRAM space is not accessible. This 15 MB–16 MB hole is an optionally enabled ISA hole.

Video accelerators originally used this hole. It is also used by validation and customer SV teams for some of their test cards. That is why it is being supported. There is no inherent BIOS request for the 15–16 MB window.

7.2.2 TSEG

TSEG is optionally 1 MB, 2 MB, or 8 MB in size. SMM-mode CPU accesses to enabled TSEG access the physical DRAM at the same address. Non-CPU originated accesses are not allowed to access SMM space. PCI Express, and DMI originated cycles to enabled SMM space are handled as invalid cycle type with reads and writes to location 0 and byte enables turned off for writes. When the extended SMRAM space is enabled, CPU accesses to the TSEG range without SMM attribute or without WB attribute are also forwarded to memory as invalid accesses. Non-SMM-mode Write Back cycles that target TSEG space are completed to DRAM for cache coherency. When SMM is enabled the maximum amount of memory available to the system is equal to the amount of physical DRAM minus the value in the TSEG register which is fixed at 1 MB, 2 MB or 8 MB.

7.2.3 Pre-allocated Memory

Voids of physical addresses that are not accessible as general system memory and reside within system memory address range (< TOLUD) are created for SMM-mode and legacy VGA graphics compatibility. It is the responsibility of BIOS to properly initialize these regions. Table 7-4 details the location and attributes of the regions.

Table 7-4. Pre-Allocated Memory Example for 64 MB DRAM, 1 MB VGA and 1 MB TSEG

Memory Segments	Attributes	Comments
0000_0000h - 03DF_FFFh	R/W	Available System Memory 62 MB
03E0_0000h – 03EF_FFFFh	SMM Mode Only - CPU Reads	TSEG Address Range & Pre-allocated Memory
03F0_0000h - 03FF_FFFFh	R/W	Pre-allocated Graphics VGA memory.

7.3 PCI Memory Address Range (TOLUD to 4 GB)

This address range (see Table 7-4), from the top of physical memory to 4 GB is normally mapped via the DMI to PCI.

Exceptions to this mapping include the BAR memory mapped regions. Which include:

- 1. EPBAR, MCHBAR, DMIBAR.
- 2. The second exception to the mapping rule deals with the PCI Express port:
 - Addresses decoded to the PCI Express Memory Window defined by the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers are mapped to PCI Express.
 - Addresses decoded to PCI Express Configuration Space are mapped based on Bus, Device, and Function number. (PCIEXBAR range).

Note: The AGP Aperture no longer exists with PCI Express.

• The exceptions listed above for PCI Express ports **MUST NOT** overlap with APCI Configuration, FSB Interrupt Space and High BIOS Address Range.

Figure 7-4. PCI Memory Address Range

FFFF_FFFh		4 GB
FFE0_0000h	High BIOS	
	DMI Interface (subtractive decode)	4 GB – 2 MB
FEF0_0000h	· · · · ·	4 GB – 17 MB
FEE0_0000h	FSB Interrupts DMI Interface	4 GB – 18 MB Optional HSEG
FED0 0000h	(subtractive decode)	FEDA_0000h to
FEC8_0000h	Local (processor) APIC	4 GB – 19 MB FEDB_FFFM
FEC8_000011	I/O APIC	
FEC0_0000h		4 GB – 20 MB
	DMI Interface (subtractive decode)	
F000_0000h		4 GB – 256 MB
	PCI Express* Configuration Space	Possible address range (Not fixed)
E000_0000h		4 GB – 512 MB
	DMI Interface (subtractive decode)	Programmable windows, graphics ranges, PCI Express* Port could be here
		TOLUD

7.3.1 APIC Configuration Space (FEC0_0000h-FECF_FFFh)

This range is reserved for APIC configuration space. The I/O APIC(s) usually reside in the ICH7 portion of the chipset, but can also exist as stand-alone components.

The IOAPIC spaces are used to communicate with IOAPIC interrupt controllers that may be populated in the system. Since it is difficult to relocate an interrupt controller using plug-and-play software, fixed address decode regions have been allocated for them. Processor accesses to the default IOAPIC region (FEC0_0000h to FEC7_FFFFh) are always forwarded to DMI.

7.3.2 HSEG (FEDA_0000h-FEDB_FFFh)

This optional segment from FEDA_0000h to FEDB_FFFFh provides a remapping window to SMM space. It is sometimes called the High SMM memory space. SMM-mode CPU accesses to the optionally enabled HSEG are remapped to 000A_0000h - 000B_FFFFh. Non-SMM-mode CPU accesses to enabled HSEG are considered invalid and are terminated immediately on the FSB. The exceptions to this rule are Non-SMM-mode Write Back cycles which are remapped to SMM space to maintain cache coherency. PCI Express and DMI originated cycles to enabled SMM space are not allowed. Physical DRAM behind the HSEG transaction address is not remapped and is not accessible. All Cacheline writes with WB attribute or Implicit write backs to the HSEG range are completed to DRAM like an SMM cycle.

7.3.3 FSB Interrupt Memory Space (FEE0_0000-FEEF_FFF)

The FSB Interrupt space is the address used to deliver interrupts to the FSB. Any device on PCI Express or DMI may issue a Memory Write to 0FEEx_xxxxh. The MCH will forward this Memory Write along with the data to the FSB as an Interrupt Message Transaction. The MCH terminates the FSB transaction by providing the response and asserting HTRDY#. This Memory Write cycle does not go to DRAM.

7.3.4 High BIOS Area

The top 2 MB (FFE0_0000h -FFFF_FFFh) of the PCI Memory Address Range is reserved for System BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system BIOS. The CPU begins execution from the High BIOS after reset. This region is mapped to the DMI so that the upper subset of this region aliases to the 16 MB–256 KB range. The actual address space required for the BIOS is less than 2 MB, but the minimum CPU MTRR range for this region is 2 MB so that full 2 MB must be considered.

7.4 Main Memory Address Space (4 GB to Remaplimit)

The maximum main memory size supported is 8 GB total DRAM memory. A hole between TOLUD and 4 G occurs when main memory size approaches 4 GB or larger. As a result, a TOM register and Remapbase/Remaplimit registers become relevant.

The new remap configuration registers exist to reclaim lost main memory space.

Upstream write accesses above 36-bit addressing will be treated as peer writes by PCI Express and DMI. Upstream read accesses above 36-bit addressing will be treated as invalid cycles by PCI Express and DMI.

7.4.1 Top of Memory

This "Top of Memory" register reflects the total amount of populated physical memory. This is also the amount of addressable physical memory when remapping is used appropriately to ensure that no physical memory is wasted. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped I/O).

TOLUD register is restricted to 4 GB memory (A[31:27]), but the MCH can support up to 8 GB, limited by DRAM pins. For physical memory greater than 4 GB, the TOM register helps identify the address range in between the 4 GB boundary and the top of physical memory. This identifies memory that can be directly accessed (no remap address calculation) which is useful for memory access indication, early path indication, and trusted read indication.

C1DRB3 cannot be used directly to determine the effective size of memory as the values programmed in the DRB's depend on the memory mode (stacked, interleaved). The Remap Base/ Limit registers also can not be used because remapping can be disabled. The TOM register is used for early memory channel identification (channel A vs. channel B) in the case of stacked memory.

7.4.2 Memory Re-claim Background

The following are examples of Memory Mapped IO devices which are typically located below 4 GB:

- High BIOS
- HSEG
- TSEG
- XAPIC
- IO APIC
- Local APIC
- FSB Interrupts
- PCI Express BAR
- MCHBAR
- EPBAR
- DMIBAR
- PMBASE/PMLIMIT, including PMBASEU/PMLIMITU
- MBASE/MLIMIT

In previous generation MCHs, the physical DRAM memory overlapped by the logical address space allocated to these Memory Mapped I/O devices was unusable. The result is that a large amount of physical memory populated in the system is unusable.

The MCH provides the capability to re-claim the physical memory overlapped by the Memory Mapped I/O logical address space. The MCH re-maps physical memory from the Top of Low Memory (TOLUD) boundary up to the 4 GB boundary to an equivalent sized logical address range located just above the top of physical memory.

7.4.3 Memory Re-mapping

An incoming address (referred to as a logical address) is checked to see if it falls in the memory remap window. The bottom of the re-map window is defined by the value in the REMAPBASE register. The top of the re-map window is defined by the value in the REMAPLIMIT register. An address that falls within this window is remapped to the physical memory starting at the address defined by the TOLUD register.

7.4.4 PCI Express Configuration Address Space

There is a device 0 register, PCIEXBAR, that defines the base address for the 256 MB block of addresses below the top of addressable memory (currently 4 GB) for the configuration space associated with all devices and functions that are potentially a part of the PCI Express root complex hierarchy. This range will be aligned to a 64 MB, 128 MB or 256 MB boundary. BIOS must assign this address range such that it will not conflict with any other address ranges.

7.4.5 PCI Express

The MCH can be programmed to direct memory accesses to the PCI Express interface when addresses are within either of two ranges specified via registers in MCH's Device #1 configuration space.

- The first range is controlled via the Memory Base Register (MBASE) and Memory Limit Register (MLIMIT) registers.
- The second range is controlled via the Prefetchable Memory Base (PMBASE) and Prefetchable Memory Limit (PMLIMIT) registers.

The MCH positively decodes memory accesses to PCI Express memory address space as defined by the following inequalities:

 $Memory_Base_Address \le Address \le Memory_Limit_Address$

 $Prefetchable_Memory_Base_Address \leq Address \leq Prefetchable_Memory_Limit_Address$

It is essential to support a separate Prefetchable range in order to apply USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining.

Note that the MCH Device #1 memory range registers described above are used to allocate memory address space for any PCI Express devices sitting on PCI Express that require such a window.

The PCICMD1 register can override the routing of memory accesses to PCI Express. In other words, the memory access enable bit must be set in the device 1 PCICMD1 register to enable the memory base/limit and prefetchable base/limit windows.

7.5 System Management Mode (SMM)

System Management Mode uses main memory for System Management RAM (SMM RAM). The MCH supports: Compatible SMRAM (C_SMRAM), High Segment (HSEG), and Top of Memory Segment (TSEG). System Management RAM space provides a memory area that is available for the SMI handlers and code and data storage. This memory resource is normally hidden from the system OS so that the processor has immediate access to this memory space upon entry to SMM. The MCH provides three SMRAM options:

- Below 1 MB option that supports compatible SMI handlers.
- Above 1 MB option that allows new SMI handlers to execute with write-back cacheable SMRAM.
- Optional TSEG area of 1 MB, 2 MB, or 8 MB in size.
- The above 1 MB solutions require changes to compatible SMRAM handlers' code to properly execute above 1 MB.

Note: DMI and PCI Express masters are not allowed to access the SMM space.

7.5.1 SMM Space Definition

SMM space is defined by its **addressed** SMM space and its DRAM SMM space. The addressed SMM space is defined as the range of bus addresses used by the CPU to access SMM space. DRAM SMM space is defined as the range of physical DRAM memory locations containing the SMM code. SMM space can be accessed at one of three transaction address ranges: Compatible, High and TSEG. The Compatible and TSEG SMM space is not remapped, and therefore the addressed and DRAM SMM space is the same address range. Since the High SMM space is remapped the addressed and DRAM SMM space are different address ranges. Note that the High DRAM space is the same as the Compatible Transaction Address space. The table below describes three unique address ranges:

- Compatible Transaction Address
- High Transaction Address
- TSEG Transaction Address

SMM Space Enabled	Transaction Address Space	DRAM Space (DRAM)
Compatible (C)	000A_0000h to 000B_FFFFh	000A_0000h to 000B_FFFFh
High (H)	FEDA_0000h to FEDB_FFFFh	000A_0000h to 000B_FFFFh
TSEG (T)	(TOLUD-TSEG) to TOLUD	(TOLUD-TSEG) to TOLUD

7.5.2 SMM Space Restrictions

If any of the following conditions are violated, the results of SMM accesses are unpredictable and may cause the system to hang:

- 1. The Compatible SMM space **must not** be set-up as cacheable.
- 2. High or TSEG SMM transaction address space **must not** overlap address space assigned to system DRAM, or to any "PCI" devices (including DMI, PCI Express, and graphics devices). This is a BIOS responsibility.
- 3. Both D_OPEN and D_CLOSE **must not** be set to 1 at the same time.
- 4. When TSEG SMM space is enabled, the TSEG space **must not** be reported to the OS as available DRAM. This is a BIOS responsibility.

7.5.3 SMM Space Combinations

When High SMM is enabled (G_SMRAME=1 and H_SMRAM_EN=1), the Compatible SMM space is effectively disabled. CPU originated accesses to the Compatible SMM space are forwarded to PCI Express if VGAEN=1 (also depends on MDAP), otherwise they are forwarded to the DMI. PCI Express and DMI originated accesses are **never** allowed to access SMM space.

Table 7-5. SMM Space Table (Sheet 1 of 2)

Global Enable G_SMRAME	High Enable H_SMRAM_EN	TSEG Enable TSEG_EN	Compatible (C) Range	High (H) Range	TSEG (T) Range
0	Х	Х	Disable	Disable	Disable
1	0	0	Enable	Disable	Disable

Global Enable G_SMRAME	High Enable H_SMRAM_EN	TSEG Enable TSEG_EN	Compatible (C) Range	High (H) Range	TSEG (T) Range
1	0	1	Enable	Disable	Enable
1	1	0	Disabled	Enable	Disable
1	1	1	Disabled	Enable	Enable

7.5.4 SMM Control Combinations

The G_SMRAME bit provides a global enable for all SMM memory. The D_OPEN bit allows software to write to the SMM ranges without being in SMM mode. BIOS software can use this bit to initialize SMM code at powerup. The D_LCK bit limits the SMM range access to only SMM mode accesses. The D_CLS bit causes SMM data accesses to be forwarded to the DMI or PCI Express. The SMM software can use this bit to write to video memory while running SMM code out of DRAM.

Table 7-6. SMM Control Table

G_SMRAME	D_LCK	D_CLS	D_OPEN	CPU in SMM Mode	SMM Code Access	SMM Data Access
0	х	Х	х	х	Disable	Disable
1	0	Х	0	0	Disable	Disable
1	0	0	0	1	Enable	Enable
1	0	0	1	x	Enable	Enable
1	0	1	0	1	Enable	Disable
1	0	1	1	х	Invalid	Invalid
1	1	Х	х	0	Disable	Disable
1	1	0	х	1	Enable	Enable
1	1	1	х	1	Enable	Disable

7.5.5 SMM Space Decode and Transaction Handling

Only the CPU is allowed to access SMM space. PCI Express and DMI originated transactions are not allowed to SMM space.

7.5.6 CPU WB Transaction to an Enabled SMM Address Space

CPU Writeback transactions (HREQ[1]# = 0) to enabled SMM Address Space must be written to the associated SMM DRAM even though D_OPEN=0 and the transaction is not performed in SMM mode. This ensures SMM space cache coherency when cacheable extended SMM space is used.

7.5.7 Memory Shadowing

Any block of memory that can be designated as read-only or write-only can be "shadowed" into MCH DRAM memory. Typically this is done to allow ROM code to execute more rapidly out of main DRAM. ROM is used as read-only during the copy process while DRAM at the same time is designated write-only. After copying, the DRAM is designated read-only so that ROM is shadowed. CPU bus transactions are routed accordingly.

7.5.8 I/O Address Space

The MCH does not support the existence of any other I/O devices beside itself on the CPU bus. The MCH generates either DMI or PCI Express bus cycles for all CPU I/O accesses that it does not claim. Within the host bridge the MCH contains two internal registers in the CPU I/O space, Configuration Address Register (CONFIG_ADDRESS) and the Configuration Data Register (CONFIG_DATA). These locations are used to implement a configuration space access mechanism.

The CPU allows 64 K+3 bytes to be addressed within the I/O space. The MCH propagates the CPU I/O address without any translation on to the destination bus and therefore provides addressability for 64 K+3 byte locations. Note that the upper 3 locations can be accessed only during I/O address wrap-around when CPU bus HA[16]# address signal is asserted. HA[16]# is asserted on the CPU bus whenever an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. HA[16]# is also asserted when an I/O access is made to 2 bytes from address 0FFFPh.

The I/O accesses (other than ones used for configuration space access) are forwarded normally to the DMI bus unless they fall within the PCI Express I/O address range as defined by the mechanisms explained below. I/O writes are **not** posted. Memory writes to ICH7 or PCI Express are posted. The PCICMD1 register can disable the routing of I/O cycles to PCI Express.

The MCH responds to I/O cycles initiated on PCI Express or DMI with a UR status. Upstream I/O cycles and configuration cycles should never occur. If one does occur, the request will route as a read to memory address 0h so a completion is naturally generated (whether the original request was a read or write). The transaction will complete with a UR completion status.

For Pentium® processors, I/O reads that lie within 8-byte boundaries but cross 4-byte boundaries are issued from the CPU as 1 transaction. The MCH will break this into 2 separate transactions. I/O writes that lie within 8-byte boundaries but cross 4-byte boundaries are assumed to be split into 2 transactions by the CPU.

7.5.9 PCI Express I/O Address Mapping

The MCH can be programmed to direct non-memory (I/O) accesses to the PCI Express bus interface when CPU initiated I/O cycle addresses are within the PCI Express I/O address range. This range is controlled via the I/O Base Address (IOBASE) and I/O Limit Address (IOLIMIT) registers in MCH Device #1 configuration space.

7.5.10 MCH Decode Rules and Cross-Bridge Address Mapping

The following are MCH decode rules and cross-bridge address mapping used in this chipset:

- VGAA = 000A_0000 000A_FFFF
- MDA = 000B_0000 000B_7FFF

- $VGAB = 000B_{8000} 000B_{FFFF}$
- MAINMEM = 0100_0000 to TOLUD

7.5.11 Legacy VGA and I/O Range Decode Rules

The legacy 128 KB VGA memory range 000A_0000h-000B_FFFFh can be mapped to PCI Express (Device #1), and/or to the DMI depending on the programming of the VGA steering bits. Priority for VGA mapping is constant in that the MCH always decodes internally mapped devices first. The MCH always positively decodes internally mapped devices, namely PCI Express. Subsequent decoding of regions mapped to PCI Express or the DMI depends on the Legacy VGA configurations bits (VGA Enable & MDAP) in the LAC register (Device 0).

§

8 Functional Description

This chapter describes the MCH interfaces and major functional units.

8.1 Host Interface

The MCH supports the Pentium 4 processor subset of the Enhanced Mode Scaleable Bus. The cache line size is 64 bytes. Source synchronous transfer is used for the address and data signals. The address signals are double pumped and a new address can be generated every other bus clock. At 266 MHz bus clock the address signals run at 533 MT/s. The data is quad pumped and an entire 64 byte cache line can be transferred in two bus clocks. At 266 MHz bus clock the data signals run at 1066 MT/s for a maximum bandwidth of 10.7 GB/s.

8.1.1 FSB IOQ Depth

The Scalable Bus supports up to 12 simultaneous outstanding transactions.

8.1.2 FSB OOQ Depth

The MCH supports only one outstanding deferred transaction on the FSB.

8.1.3 FSB GTL+ Termination

The MCH integrates GTL+ termination resistors on die. Also, approximately 2.8 pF (fast) – 3.3 pF (slow) per pad of on-die capacitance will be implemented to provide better FSB electrical performance.

8.1.4 FSB Dynamic Bus Inversion

The MCH supports Dynamic Bus Inversion (DBI) when driving and receiving data from the CPU. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data phase. This decreases the worst-case power consumption of the MCH. HDINV[3:0]# indicate if the corresponding 16 bits of data are inverted on the bus for each quad pumped data phase:

HDINV[3:0]#	Data Bits
HDINV0#	HD[15:0]#
HDINV1#	HD[31:16]#
HDINV2#	HD[47:32]#
HDINV3#	HD[63:48]#

Whenever the CPU or the MCH drives data, each 16-bit segment is analyzed. If more than 8 of the 16 signals would normally be driven low on the bus the corresponding HDINV# signal will be asserted and the data will be inverted prior to being driven on the bus. Whenever the CPU or the MCH receives data it monitors HDINV[3:0]# to determine if the corresponding data segment should be inverted.

8.1.4.1 APIC Cluster Mode Support

This is required for backwards compatibility with existing software, including various operating systems. As an example, beginning with Microsoft Windows* 2000 there is a mode (boot.ini) that allows an end user to enable the use of cluster addressing support of the APIC.

- The MCH supports three types of interrupt re-direction:
 - Physical
 - Flat-Logical
 - Clustered-Logical

8.2 System Memory Controller

The system memory controller supports two styles of memory organization (Interleaved and Asymmetric). Rules for populating DIMM slots are included in this chapter. Sample memory organizations are provided in Table 8-1 and Table 8-2.

Table 8-1. Sample System Memory Organization with Interleaved Channels

	Channel A Population	Cumulative Top Address in Channel A	Channel B Population	Cumulative Top Address in Channel B
Rank 3	0 MB	2560 MB	0 MB	2560 MB
Rank 2	256 MB	2560 MB	256 MB	2560 MB
Rank 1	512 MB	2048 MB	512 MB	2048 MB
Rank 0	512 MB	1024 MB	512 MB	1024 MB

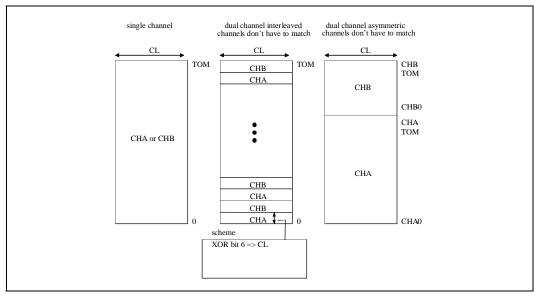
Table 8-2. Sample System Memory Organization with Asymmetric Channels

	Channel A Population	Cumulative Top Address in Channel A	Channel B Population	Cumulative Top Address in Channel B
Rank 3	0 MB	1280 MB	0 MB	2560 MB
Rank 2	256 MB	1280 MB	256 MB	2560 MB
Rank 1	512 MB	1024 MB	512 MB	2304 MB
Rank 0	512 MB	512 MB	512 MB	1792 MB

Interleaved Mode

This mode provides maximum performance on real applications. Addresses are ping-ponged between the channels, and the switch happens after each cache line (64 byte boundary). If two consecutive cache lines are requested, both may be retrieved simultaneously, since they are on

opposite channels. The drawbacks of Interleaved Mode are that the system designer must populate both channels of memory such that they have equal capacity, but the technology and device width may vary from one channel to the other.


Enhanced Channel Interleaving

Transactions are issued to both channels simultaneously.

Asymmetric Mode

This mode trades performance for system design flexibility. Unlike the previous mode, addresses start in channel A and stay there until the end of the highest rank in channel A, then addresses continue from the bottom of channel B to the top. Real world applications are unlikely to make requests that alternate between addresses that sit on opposite channels with this memory organization, so in most cases, bandwidth will be limited to that of a single channel. The system designer is free to populate either channel in any manner, including degenerating to single channel case.

Figure 8-1. System Memory Styles

8.2.1 System Memory Configuration Registers Overview

The configuration registers located in the PCI configuration space of the MCH control the System Memory operation. Following is a brief description of configuration registers.

DRAM Rank Boundary (CxDRBy): The x represents a channel, either A or B. The y represents a rank, 0 through 3. DRB registers define the upper addresses for a rank of DRAM devices in a channel. When the MCH is configured in asymmetric mode, each register represents a single rank. When the MCH is configured in a dual interleaved mode, each register represents a pair of corresponding ranks in opposing channels. There are four DRB registers for each channel.

DRAM Rank Architecture (CxDRAy): The x represents a channel, either A or B. The y represents a rank, 0 through 3. DRA registers specify the architecture features of each rank of devices in a channel. The only architecture feature specified is page size. When MCH is configured in asymmetric mode, each DRA represents a single rank in a single channel. When MCH is

configured in a dual-channel interleaved mode, each DRA represents a pair of corresponding ranks in opposing channels. There are 4 DRA registers per channel. Each requires only 3 bits, so there are two DRAs packed into a byte.

DRAM Timing (CxDRT1): The x represents a channel, A or B represented by 0 and 1 respectively. The DRT register defines the timing parameters for all devices in a channel. The BIOS programs this register with "least common denominator" values after reading the SPD registers of each DIMM in the channel.

DRAM Control (CxDRC0): The x represents a channel, A or B represented by 0 and 1 respectively. DRAM refresh mode, rate, and other controls are selected here.

8.2.2 DRAM Technologies and Organization

"Single sided" below is a logical term referring to the number of Chip Selects attached to the DIMM. A real DIMM may put the components on both sides of the substrate, but be logically indistinguishable from single sided DIMM if all components on the DIMM are attached to the same Chip Select signal.

- x8 means that each component has 8 data lines
- x16 means that each component has 16 data lines

All standard 256 Mb, 512 Mb, and 1 Gb technologies and addressing are supported for x16 and x8 devices.

For DDR2

- 533 (PC 4300) ECC
 - Version A = Single sided x8
 - Version B = Double sided x8
- 667 (PC 5300) ECC
 - Version F = Single sided x8
 - Version G = Double sided x8

No support for DIMMs with different technologies or capacities on opposite sides of the same DIMM. If one side of a DIMM is populated, the other side is either identical or empty.

The DRAM sub-system supports single or dual channels, 64b or 72b wide per channel.

There can be a maximum of 4 ranks populated (2 Double Sided DIMMs) per channel. Mixed mode DDR DS-DIMMs (x8 and x16 on the same DIMM) are not supported.

By using 1 Gb technology, the largest memory capacity is 8 GB (16K rows * 1K columns * 1 cell/ (row * column) * 8 b/cell * 8 banks/device * 8 devices/rank * 4 ranks/channel * 2 channel *1M/ (K*K) * 1G/1024M * 1B/8b = 8 GB). Using 8 GB of memory is only possible in Interleaved mode with all ranks populated at maximum capacity.

By using 256Mb technology, the smallest memory capacity is 128 MB (8K rows * 512 columns * 1 cell/(row * column) * 16b/cell * 4 banks/device * 4 devices/rank * 1 rank * 1M/1024K * 1B/8b = 128 MB)

8.2.2.1 Rules for Populating DIMM Slots

In all modes, the frequency of System Memory will be the lowest frequency of all DIMMs in the system, as determined through the SPD registers on the DIMMs.

In the Single Channel mode, any DIMM slot within the channel may be populated in any order. Either channel may be used. To save power, do not populate the unused channel.

In Dual Channel Asymmetric mode, any DIMM slot may be populated in any order.

In Dual Channel Interleaved mode, any DIMM slot may be populated in any order, but the total memory in each channel must be the same.

8.2.2.2 System Memory Supported Configurations

The Intel®E7230 MCH supports the 256 Mbit, 512 Mbit and 1 Gbit technology based DIMMs from Table 8-3.

Technology	Configuration	# of Row Address Bits	# of Column Address Bits	# of Bank Address Bits	Page Size	Rank Size
256 Mbit	16M X 16	13	9	2	4K	128 MB
256 Mbit	32M X 8	13	10	2	8K	256 MB
512 Mbit	32M X 16	13	10	2	8K	256 MB
512 Mbit	64M X 8	14	10	2	8K	512 MB
1 Gbit	64M X 16	13	10	3	8K	512 MB
1 Gbit	128M X 8	14	10	3	8K	1 GB

Table 8-3. DDR2 DIMM Supported Configurations

8.2.2.3 Main Memory DRAM Address Translation and Decoding

Table 8-4 and Table 8-5 specify the host interface to memory interface address multiplex for the Intel® E7230 MCH. Please refer to the details of the various DIMM configurations as described in Table 8-3 of this document. The address lines specified in the column header refer to the host (CPU) address lines.

Tech	Banks	Page Size	Rank Size	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
256 Mb x16	4i	4 KB	128 MB						r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	r 11	r 12	b 0	b 1	с 8	с 7	с 6	с 5	с 4	с З	с 2	с 1	с 0
256 Mb x8	4i	8 KB	256 MB					r 12	r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	r 11	b 1	b 0	с 9	с 8	с 7	с 6	с 5	с 4	с З	с 2	с 1	с 0
512 Mb x16	4i	8 KB	256 MB					r 12	r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	r 11	b 1	р 0	с 9	с 8	с 7	0 O	с 5	с 4	с 3	с 2	с 1	с 0

Table 8-4. DRAM Address Translation (Single/Dual Channel Asymmetric Mode) (Sheet 1 of 2)

Page Size Rank Size Banks Tech 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 5 8 6 4 3 8 KB 4i 512 512 r 12 r 10 b 0 r 6 r 5 r 3 r 2 r 1 b 1 с 6 с 5 с 2 с 0 r r 9 r 8 r 7 r 4 r 0 r с 9 с 8 с 7 с 4 с 3 с 1 13 MB 11 Mb x8 8i 512 1 8 r 12 r 10 b 0 b 1 b 2 с 5 r r 9 r 8 r 7 r 6 r 5 r 4 r 3 r 2 r 1 r 0 с 9 с 8 с 7 с 6 с 4 с 3 с 2 с 1 с 0 Gb KΒ 11 MB x16 1 8i r 10 8 1 b 0 с 9 с 8 с 7 с 6 с 5 с 4 с 3 с 2 r r 5 r 4 r 3 b b С С r r r r r 7 r r 2 r r GB 13 12 9 8 2 Gb KΒ 11 6 1 0 1 1 0 x8

intel

Table 8-4.	DRAM Address Translation	on (Single/Dual Channel	Asymmetric Mode) (Sheet 2 of 2)
------------	--------------------------	-------------------------	---------------------------------

Note: b - 'bank' select bit

c - 'column' address bit

r - 'row' address bit

Table 8-5. DRAM Address Translation (Dual Channel Symmetric Mode)

Tech	Banks	Page Size	Rank Size	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
256 Mb x16	4i	4 KB	128 MB					r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	r 11	r 12	b 0	b 1	с 8	с 7	с 6	с 5	с 4	с З	h	с 2	с 1	с 0
256 Mb x8	4i	8 KB	256 MB				r 12	r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	r 11	b 1	b 0	с 9	с 8	с 7	с 6	с 5	с 4	с З	h	с 2	с 1	с 0
512 Mb x16	4i	8 KB	256 MB				r 12	r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	r 11	b 1	b 0	с 9	с 8	с 7	с 6	с 5	с 4	с З	h	с 2	с 1	с 0
512 Mb x8	4i	8 KB	512 MB			r 13	r 12	r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	r 11	b 1	b 0	с 9	с 8	с 7	с 6	с 5	с 4	с З	h	с 2	с 1	с 0
1 Gb x16	8i	4 KB	512 MB			r 11	r 12	r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	b 0	b 1	b 2	с 9	с 8	с 7	с 6	с 5	с 4	с 3	h	с 2	с 1	с 0
1 Gb x8	8i	8 KB	1 GB		r 13	r 11	r 12	r 10	r 9	r 8	r 7	r 6	r 5	r 4	r 3	r 2	r 1	r O	b 0	b 1	b 2	с 9	с 8	с 7	с 6	с 5	с 4	с З	h	с 2	с 1	с 0

Note: b - 'bank' select bit

c - 'column' address bit

h - 'channel' select bit

r - 'row' address bit

8.2.2.4 ECC Support

The MCH supports ECC (Error Checking and Correction) and uses an ECC algorithm to protect against soft errors, when enabled. The algorithm works on a QWord (64-bit) basis. It will correct any single-bit error and detect any two-bit errors. An odd number of errors greater than 1, will

inte

either be detected correctly or will be misinterpreted as a single-bit error, and cannot be corrected. An error in an even number of bits greater than two will either be detected as a multi-bit error or it may not be detected at all.

8.2.3 DRAM Clock Generation

The MCH generates three differential clock pairs for every supported DIMM. There are total of 6 clock pairs driven directly by the MCH to two DIMMs per channel.

8.2.4 DDR2 On Die Terminations

On die termination (ODT) is a feature that allows a DRAM to turn on/off internal termination resistance for each DQ, DM, DQS, and DQS# signal for x8 and x16 configurations via the ODT control signals. The ODT feature is designed to improve signal integrity of the memory channel by allowing the termination resistance for the DQ, DM, DQS, and DQS# signals to be located inside the DRAM devices themselves instead of on the motherboard. The MCH drives out the required ODT signals, based on memory configuration and which rank is being written to or read from, to the DRAM devices on a targeted DIMM rank to enable or disable their termination resistance.

8.3 PCI Express

See Section 1 for a list of PCI Express features and the PCI Express specification for further details.

This MCH is part of a PCI Express root complex. This means it connects a host CPU/memory subsystem to a PCI Express hierarchy. The control registers for this functionality are located in device #1 configuration space and two Root Complex Register Blocks (RCRBs). The DMI RCRB contains registers for control of the ICH7 attach ports.

8.3.1 PCI Express Architecture

The PCI Express architecture is specified in layers. Compatibility with the PCI addressing model (a load-store architecture with a flat address space) is maintained to ensure that all existing applications and drivers operate unchanged. The PCI Express configuration uses standard mechanisms as defined in the PCI Plug-and-Play specification. The initial speed of 1.25 GHz (250 MHz internally) results in 2.5 Gb/s/direction which provides a 250 MB/s communications channel in each direction (500 MB/s total), which is close to twice the data rate of classic PCI per lane.

8.3.1.1 Transaction Layer

The upper layer of the PCI Express architecture is the Transaction Layer. The Transaction Layer's primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as read and write, as well as certain types of events. The Transaction Layer also manages flow control of TLPs.

8.3.1.2 Data Link Layer

The middle layer in the PCI Express stack, the Data Link Layer, serves as an intermediate stage between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer include link management, error detection, and error correction.

8.3.1.3 Physical Layer

The Physical Layer includes all circuitry for interface operation, including driver and input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching circuitry.

8.4 **Power Management**

Power Management features include:

- ACPI 1.0b support
- ACPI S0, S4, S5, C0, and C1 states
- Enhanced power management state transitions for increasing time CPU spends in low power states
- Graphics Adapter States: D0, D3.
- PCI Express Link States: L0, L0s, L1, L2/L3 Ready, L3

8.5 Clocking

The MCH has PLLs to providing the internal clocks. The PLLs are:

- Host PLL Generates the main core clocks in the host clock domain. This PLL can also be used to generate memory core clocks. It uses the Host clock (HCLK) as a reference.
- Memory PLL Can be used to generate memory core clocks, when not generated by the Host PLL. This PLL is not needed in all configurations, but exists to provide more flexible frequency combinations without an unreasonable VCO frequency. It uses the Host clock (HCLK) as a reference.
- PCI Express PLL Generates all PCI Express related clocks, including the Direct Media Interface that connects to the ICH7. This PLL uses the 100 MHz (GCLK) as a reference.

9 Electrical Characteristics

This chapter contains the MCH absolute maximum electrical ratings, power dissipation values, and DC characteristics.

9.1 Absolute Minimum and Maximum Ratings

Table 9-1 specifies the Intel®E7230 chipset MCH's absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but its lifetime may be degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor longterm reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function, or its reliability will be severely degraded.

Although the MCH contains protective circuitry to help resist damage from static electric discharge, additional precautions should always be taken to avoid damage from high static voltages or electric fields.

Symbol	Parameter	Min	Max	Unit	Notes
T _{storage}	Storage Temperature	-55	150	°C	1
	MCH Core				
V _{CC}	1.5 V Core Supply Voltage with respect to V_{SS}	-0.3	1.65	V	
	Host Interface (533 MHz/800 MH	lz/1066 MHz)			
V _{TT}	1.2 V System Bus Input Voltage with respect to $V_{\rm SS}$	-0.3	1.65	V	
V _{CCA_HPLL}	1.5 V Host PLL Analog Supply Voltage with respect to V_{SS}	-0.3	1.65	V	
	DDR2 Interface (533 MHz/6	67 MHz)			
V _{CCSM}	1.8 V DDR2 System Memory Supply Voltage with respect to $\rm V_{SS}$	-0.3	4.0	V	
V _{CCA_SMPLL}	1.5 V System Memory PLL Analog Supply Voltage with respect to V _{SS}	-0.3	1.65	V	

Table 9-1. Absolute Minimum and Maximum Ratings (Sheet 1 of 2)

Symbol	Parameter	Min	Max	Unit	Notes
	PCI Express/DMI Inter	face			
V _{CC_EXP}	1.5 V PCI Express and DMI Supply Voltage with respect to $\rm V_{SS}$	-0.3	1.65	V	
V _{CCA_EXPPL}	1.5 V PCI Express PLL Analog Supply Voltage with respect to V_{SS}	-0.3	1.65	V	
V _{CCA_3GBG}	2.5 V PCI Express Band-gap Supply Voltage with respect to ${\rm V}_{\rm SS}$	-0.3	2.65	V	
	CMOS Interface			•	
V _{CC2}	2.5 V CMOS Supply Voltage with respect to V_{SS}	-0.3	2.65	V	

Table 9-1. Absolute Minimum and Maximum Ratings (Sheet 2 of 2)

NOTE: Possible damage to the MCH may occur if the MCH temperature exceeds 150°C. Intel does not warrant parts that have exceeded temperatures above 150°C since this exceeds Intel's specification.

9.2 **Power Characteristics**

Table 9-2. Non Memory Power Characteristics

Symbol	Parameter	Signal Names	Min	Max	Unit	Notes
I _{VTT}	System Bus Supply Current	VTT	—	0.9	А	1, 4, 5
I _{VCC}	1.5 V Core Supply Current	VCC	—	8.9	А	2,3,4,5
I _{VCC_EXP}	1.5 V PCI Express and DMI Supply Current	VCC_EXP	_	1.5	A	5
I _{VCCA_3GBG}	2.5 V PCI Express Band-gap Supply Current	VCCA_3GBG	_	1.0	mA	5
I _{VCC2}	2.5 V CMOS Supply Current	VCC2	—	2.0	mA	5
I _{VCCA_EXPPL}	1.5 V PCI Express and DMI PLL Analog Supply Current	VCCA_EXPPLL	_	45	mA	5
I _{VCCA_HPLL}	1.5 V Host PLL Supply Current	VCCA_HPLL	_	45	mA	5

NOTES:

1. Estimate is only for maximum current coming through chipset's supply balls.

2. Rail includes DLLs and FSB sense amps.

3. Includes worst case leakage.

4. Calculated for highest frequencies.

I_{cc_max} values are determined on a per-interface basis. Maximum currents cannot occur simultaneously on all interfaces.

Table 9-3. DDR2 Power Characteristics (Sheet 1 of 2)

Symbol	Parameter	Min	Max	Unit	Notes
I _{VCCSM}	DDR2 System Memory Interface (1.8 V) Supply Current	_	4.4	А	1,2,3
I _{SUS_VCCSM}	DDR2 System Memory Interface (1.8 V) <i>Standby</i> Supply Current	_	25	mA	1
I _{SMVREF}	DDR2 System Memory Interface Reference Voltage (0.90 V) Supply Current	_	2	mA	1

Table 9-3. DDR2 Power Characteristics (Sheet 2 of 2)

Symbol	Parameter	Min	Max	Unit	Notes
I _{SUS_SMVREF}	DDR2 System Memory Interface Reference Voltage (0.90 V) Standby Supply Current	-	10	μA	1
I _{TTRC}	DDR2 System Memory Interface Resistor Compensation Voltage (1.8 V) Supply Current	-	36	mA	1
I _{SUS_TTRC}	DDR2 System Memory Interface Resistor Compensation Voltage (1.8 V) Standby Supply Current	-	10	μA	1
I _{VCCA_SMPLL}	System Memory PLL Analog (1.5 V) Supply Current	—	66	mA	1

NOTES:

1. Estimate is only for maximum current coming through chipset's supply balls.

Calculated for highest frequencies.
 I_{oc_max} values are determined on a per-interface basis. Maximum currents cannot occur simultaneously on all interfaces.

Signal Groups 9.3

The signal description includes the type of buffer used for the particular signal:

GTL+	Open Drain GTL+ interface signal. Refer to the GTL+ I/O Specification for complete details. The Intel E7230 chipset MCH integrates most GTL+ termination resistors.
DDR2	DDR2 System memory (1.8 V CMOS buffers)
PCI Express	PCI Express interface signals. These signals are compatible with PCI Express 1.0a signaling environment AC Specifications. The buffers are not 3.3 V tolerant.
Analog	Analog signal interface
Ref	Voltage reference signal
HVCMOS	2.5 V Tolerant High Voltage CMOC buffers
SSTL-1.8	1.8 V Tolerant Stub Serias Termination Logic

Table 9-4. Signal Groups (Sheet 1 of 2)

Signal Group	Signal Type	Signals	Notes
	Host Interface	Signal Groups	
(a)	GTL+' Input/Outputs	HADS#, HBNR#, HBREQ0#, HDBSY#, HDRDY#, HDINV[3:0]#, HA[35:3]#, HADSTB[1:0]#, HD[63:0], HDSTBP[3:0]#, HDSTBN[3:0]#, HHIT#, HHITM#, HREQ[4:0]#, HLOCK#	
(b)	GTL+ Common Clock Outputs	HBPRI#, HCPURST#, HDEFER#, HTRDY#, HRS[2:0]#, HEDRDY#	
(c)	Asynchronous GTL+ Input	HPCREQ#	
(d)	Analog Host I/F Ref & Comp. Signals	HDVREF, HACCVREF, HSWING, HRCOMP, HSCOMP	

Table 9-4. Signal Groups (Sheet 2 of 2)

Signal Group	Signal Type	Signals	Notes					
	Misc. CMOS Inputs	BSEL[2:0]						
	PCI Express Interf	ace Signal Groups						
(e)	PCI Express Input	EXP_RXN[7:0], EXP_RXP[7:0]						
(f)	PCI Express Output	EXP_TXN[7:0], EXP_TXP[7:0]						
(g)	Analog PCI Express I/F Compensation Signals	EXP_COMPO EXP_COMPI						
	DDR2 Interface	Signal Groups						
(h)	SSTL – 1.8 DDR2 CMOS I/O	SDQ_A[63:0], SDQ_B[63:0], SDQS_A[8:0], SDQS_A[8:0]#, SDQS_B[8:0], SDQS_B[8:0]#, SCB_A[7:0], SCB_B[7:0]						
(i)	SSTL – 1.8 DDR2 CMOS Output	SDM_A[7:0], SDM_B[7:0], SMA_A[13:0], SMA_B[13:0] SBS_A[2:0], SBS_B[2:0], SRAS_A#, SRAS_B#, SCAS_A#, SCAS_B#, SWE_A#, SWE_B#, SODT_A[3:0], SODT_B[3:0], SCKE_A[3:0], SCKE_B[3:0], SCS_A[3:0]#, SCS_B[3:0]#, SCLK_A[5:0], SCLK_A[5:0]#, SCLK_B[5:0], SCLK_B[5:0]#						
(j)	DDR2 Reference Voltage	SMVREF[1:0]						
	Clocks, Reset, and Misc	ellaneous Signal Groups						
(k)	HVCMOS Input	EXTTS#						
(I)	Miscellaneous Inputs	RSTIN#, PWROK						
(m)	Miscellaneous HVCMOS Output	ICH_SYNC#						
(n)	Low Voltage Diff. Clock Input	HCLKN, HCLKP, DREFCLKP, DREFCLKN, GCLKP, GCLKN						
	I/O Buffer Su	pply Voltages						
(o)	System Bus Input Supply Voltage	VTT						
(p)	1.5 V PCI Express Supply Voltage	VCC_EXP						
(q)	1.8 V DDR2 Supply Voltage	VCCSM						
(r)	1.5 V DDR2 PLL Analog Supply Voltage	VCC_SMPLL						
(s)	1.5 V MCH Core Supply Voltage	VCC						
(t)	2.5 V CMOS Supply Voltage	VCC2						
(u)	PLL Analog Supply Voltages	VCCA_HPLL, VCCA_EXPPLL						
(w)	2.5 V PCI Express Band-gap Supply Voltage	VCCA_3GBG						

9.4 DC Characteristics

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
	•	I/O Buffer Supply V	oltage (AC Nois	e not included	I)		
V _{CCSM}	(q)	DDR2 I/O Supply Voltage	1.7	1.8	1.9	V	4
V _{CCA_SMPLL}	(r)	DDR2 I/O PLL Analog Supply Voltage	1.425	1.5	1.575	V	
V _{CC_EXP}	(p)	PCI Express Supply Voltage	1.425	1.5	1.575	V	
V _{TT}	(0)	System Bus Input Supply Voltage	1.14	1.2	1.26	V	
V _{CC}	(s)	MCH Core Supply Voltage	1.425	1.5	1.575	V	11
V _{CC2}	(t)	CMOS Supply Voltage	2.375	2.5	2.625	V	
V _{CCA_HPLL} , V _{CCA_EXPPLL}	(v)	Various PLL Analog Supply Voltages	1.425	1.5	1.575	V	
V _{CCA_3GBG}	(w)	PCI Express Band-gap Supply Voltage	2.375	2.5	2.625	V	
		Refe	erence Voltages				
HVREF	(d)	Host Address, Data, and Common Clock Signal Reference Voltage	0.63 x V _{TT} -2%	0.63 x V _{TT}	0.63 x V _{TT} + 2%	V	
HSWING	(d)	Host Compensation Reference Voltage	0.22 x V _{TT} -2%	0.22 x V _{TT}	0.22 x V _{TT} + 2%	V	
SMVREF	(j)	DDR2 Reference Voltage	0.49 x V _{CCSM}	0.50 х V _{CCSM}	0.51 x V _{CCSM}	V	
		Н	lost Interface			•	
V _{IL_H}	(a, c)	Host GTL+ Input Low Voltage	-0.10	0	(0.63 x V _{TT}) – 0.1	V	
V _{IH_H}	(a, c)	Host GTL+ Input High Voltage	(0.63 x V _{TT}) + 0.1	V _{TT}	V _{TT} + 0.1	V	
V _{OL_H}	(a, b)	Host GTL+ Output Low Voltage	_		(0.22 x VTT) + 0.1	V	
V _{OH_H}	(a, b)	Host GTL+ Output High Voltage	V _{TT} – 0.1	_	V _{TT}	V	
I _{OL_H}	(a, b)	Host GTL+ Output Low Current	_	_	V _{TTmax} * (1 – 0.22) / R _{ttmin}	mA	$R_{ttmin} = 54$
I _{LEAK_H}	(a, c)	Host GTL+ Input Leakage Current	—	—	20	μA	V _{OL} <vpad< V_{TT}</vpad<
C _{PAD}	(a, c)	Host GTL+ Input Capacitance	2	—	2.5	pF	
C _{PCKG}	(a, c)	Host GTL+ Input Capacitance (common clock)	0.90	_	2.5	pF	

Table 9-5. DC Characteristics (Sheet 1 of 3)

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes		
	4	DI	DR2 Interface		•		<u>.</u>		
V _{IL(DC)}	(h)	DDR2 Input Low Voltage	—			V			
V _{IH(DC)}	(h)	DDR2 Input High Voltage	SMVREF + 0.125	_	_	V			
V _{IL(AC)}	(h)	DDR2 Input Low Voltage	—	_	SMVREF - 0.250	V			
V _{IH(AC)}	(h)	DDR2 Input High Voltage	SMVREF + 0.250	_	—	V			
V _{OL}	(h, i)	DDR2 Output Low Voltage	—	_	0.3	V	1		
V _{OH}	(h, i)	DDR2 Output High Voltage	1.5	—	—	V	1		
I _{Leak}	(h)	Input Leakage Current	_	_	±20	μA	5		
I _{Leak}	(h)	Input Leakage Current	_	—	±550	μA	6		
C _{I/O}	(h, i)	DDR2 Input/Output Pin Capacitance	3.0	_	6.0	pF			
		1.5 V PCI E	Express Interface	e 1.0a					
V _{TX-DIFF} P-P	(f)	Differential Peak to Peak Output Voltage	0.800	_	1.2	V	2		
V _{TX_CM-ACp}	(f)	AC Peak Common Mode Output Voltage			20	mV			
Z _{TX-DIFF-DC}	(f)	DC Differential TX Impedance	80	100	120	Ω			
V _{RX-DIFF p-p}	(e)	Differential Peak to Peak Input Voltage	0.175	_	1.2	V	3		
V _{RX_CM-ACp}	(e)	AC Peak Common Mode Input Voltage	—	_	150	mV			
		Clocks, Reset, a	and Miscellaneo	us Signals					
V _{IL}	(k)	Input Low Voltage	—	_	0.8	V			
V _{IH}	(k)	Input High Voltage	2.0	_	—	V			
I _{LEAK}	(k)	Input Leakage Current	—	—	± 20	μΑ			
C _{IN}	(k)	Input Capacitance	3.0	—	6.0	pF			
V _{IL}	(m)	Input Low Voltage	-0.150	0	-	V			
V _{IH}	(m)	Input High Voltage	0.660	0.710	0.850	V			
V _{CROSS(abs)}	(m)	Absolute Crossing Voltage	0.250	—	0.550	V	7,9		
V _{CROSS(rel)}	(m)	Relative Crossing Voltage	0.250 + 0.5* (V _{Havg} – 0.700)	_	0.550 + 0.5* (V _{Havg} – 0.700)	V	8,9		
∆V _{CROSS}	(m)	Range of Crossing Points	_	_	0.140	V	10		
C _{IN}	(m)	Input Capacitance	1	_	3	pF			
V _{IL}	(I)	Input Low Voltage	—	_	0.8	V			
V _{IH}	(I)	Input High Voltage	2.0	_	_	V			
I _{LEAK}	(I)	Input Leakage Current	—	_	±100	μΑ	0 <vin<vc0 3_3</vin<vc0 		

Table 9-5.DC Characteristics (Sheet 2 of 3)

intel

Table 9-5. DC Characteristics (Sheet 3 of 3)

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
C _{IN}	(I)	Input Capacitance	4.690		5.370	pF	

NOTES:

1. Determined with 2x MCH DDR2 Buffer Strength Settings into a 50 Ω to 0.5 x V_{CCSM} test load. 2. Specified at the measurement point into a timing and voltage compliance test load as shown in Transmitter compliance eye diagram of PCI Express specification and measured over any 250 consecutive TX Uls.

- 4. This is the DC voltage supplied at the MCH and is inclusive of all noise up to 20 MHz. Any noise above 20 MHz at the MCH
- generated from any source other than the MCH itself may not exceed the DC voltage range of 1.8 V \pm 100 mV. 5. Applies to the pin to V_{CC} or V_{SS} leakage current for the SDQ_A[63:0], SDQ_B[63:0], SCB_A[7:0], and SCB_B[7:0] signals. 6. Applies to the pin-to-pin leakage current between the SDQS_A[8:0], SDQS_A[8:0]#, SDQS_B[8:0]#, and SDQS_B[8:0]# signals.

7. Crossing Voltage is defined as the instantaneous voltage value when the rising edge is equal to the falling edge.

- 8. V_{Havg} is the statistical average of the V_H measured by the oscilloscope.
- 9. The crossing point must meet the absolute and relative crossing point specifications simultaneously.

10.V_{CROSS} is defined as the total variation of all crossing voltages as defined in note 7.

11. For all noise components 20 MHz, the sum of the DC voltage and AC noise component must be within the specified DC min/ max operating range.

§

^{3.} Specified at the measurement point and measured over any 250 consecutive Uls. The test load shown in Receiver compliance eye diagram of PCI Express specification should be used as the RX device when taking measurements.

Electrical Characteristics

intel

10 Ballout and Package Information

This chapter provides the ballout and package information.

10.1 Ballout

intel®

The following two figures diagrams the MCH ballout for platforms using DDR2 system memory, as viewed from the top side of the package. The figures are broken into a left-side view and right-side view of the package.

- *Note:* Balls that are listed as RSV are reserved. Board traces should Not be routed to these balls.
- Note: Some balls marked as reserved (RSV) are used in XOR testing. See Section 11 for details.
- *Note:* Some balls marked as reserved (RSV) can be used as test points. These are marked as RSV_TPx.
- Note: Balls that are listed as NC are No Connects.

	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22
BC	NC	NC		VCCSM		SCS_A1#			VCCSM		SBS_A0		VCCSM			SMA_A4		VCCSM		SCKE_A1		VCCSM
BB	NC	VCCSM	VSS	SRAS_B#	VSS	VCCSM	SODT_A2		SCS_A0#	VSS	VCCSM	SMA_A0	SCLK_A3	SMA_A2		VCCSM	SMA_A8	SMA_A11	SBS_A2	VCCSM	SMA_B10	SMA_B2
BA		VSS	SWE_B#	SCS_B0#	SCS_A3#		SODT_A0		SWE_A#	SCS_A2#		SBS_A1	SCLK_A3#	SMA_A1			SMA_A5	SMA_A12	SCKE_A2		SBS_B0	SMA_B1
AY	VCCSM	SODT_B0	VCCSM		SODT_A3	SODT_A1	SCAS_A#			SRAS_A#	SMA_A10	SCLK_A0		SMA_A3		SMA_A6	SMA_A7		SCKE_A0	SCKE_A3	SBS_B1	
AW		SCAS_B#	SODT_B2	SCS_B2#			SMA_A13		SDQS_A4#	VCCSM		SCLK_A0#	VCCSM		VCCSM		SMA_A9	VCCSM		VCCSM	SMA_B0	
AV	SODT_B1	VCCSM		SMA_B13		SDQ_A39	VSS		VSS	SDQ_A33		SDQ_A36	VCCSM		SDQS_B4#		VSS	VSS		SCB_B2	VCCSM	
AU		SODT_B3	SCS_B3#	SCS_B1#	SDQ_A35	SDQ_B45	SDQ_A34		SDQS_A4	VSS		VSS	SDQ_B39		VSS		SDQ_B37	VSS		VSS	VSS	
	100				1/00		1/00			SDM_A4		SDQ_A37	VSS		SDQS_B4		VSS	VSS		SCB_B7	VSS	
	VSS	SDQ_A45	SDQ_A44		VSS	SDM_B5	VSS		SDQ_B44	SDQ_A38		VSS	SDQ_B34		SDM_B4		SDQ_B32	SCLK_B3#		VSS	SDQS_B8	
	SDQ_A46	SDM_A5	SDQS_A5#	SDQ_A41	SDQ_A40	VSS	SDQ_B41	SDQ_B40	SDQS_B5	VSS		SDQ_A32 SDQ_B47	SDQ_B38		VSS SDQ_B33		SDQ_B36	SCLK_B3		SCB_B6	SDQS_B8#	
AN AM		V 3 3	SDQ_A42	SDQ_A47	VSS	SDQ_B46	VSS	VSS	SDQS_B5#	VSS	SDQ_B42	SDQ_B47	V 33		SDU_B33		VOO SCLK_BO#	VOO SCB_B3		VOO SCB_B0	SCB_B1	
AL	VSS	SDQ_A53	SDQ_A52	000	V 33	SCLK_B2	VSS	SCLK_B2#	VSS	V 3 3	VSS	SDQ_B52	VSS		VSS		VSS	VSS		VSS	VSS	
AK	100	SCLK_A2	SCLK_A2#	SDQ_A49			100		100		100		100	VSS	VSS		VCC	VCC		VCC	VCC	
AJ					SDM_B6	SCLK_B5	VSS	SCLK_B5#	VSS	SDQ_B49	VSS	SDQ_B48	SDQ_B43	VSS	VCC		RSV	RSV		RSV	RSV	
AH	SCLK_A5	VSS		SCLK_A5#																		
AG		SDQS_A6	SDQS_A6#	SDM_A6	VSS	VSS	VSS	VSS	SDQ_B54	SDQS_B6	VSS	SDQS_B6#	VSS	VCC	VSS		RSV	RSV	RSV	RSV	RSV	RSV
AF	VSS	SDQ_A55	SDQ_A54		SDQ_A50	VSS	SDQ_B61	VSS	SDQ_B60	SDQ_B51	VSS	SDQ_B50	VSS	VCC	VCC		VCC	VCC	VSS	VCC	VSS	VCC
AE		SDQ_A60	SDQ_A61	SDQ_A51													VCC	VCC	VCC	VSS	VCC	VSS
AD	SDQ_A57	VSS		SDQ_A56	SDQS_B7#	VSS	SDM_B7	SDQS_B7	VSS	SDQ_B57	VSS	SDQ_B55	VSS	VSS	VCC		VCC	VCC	VSS	VCC	VSS	VCC
AC		SDQS_A7	SDQS_A7#	SDM_A7	VSS	VSS	VSS	VSS	SDQ_B63	SDQ_B62	VSS	SDQ_B56	VSS	VCC	VCC		VCC	VCC	VCC	VSS	VCC	VSS
AB	VSS	SDQ_A63	SDQ_A62														VCC	VCC	VSS	VCC	VSS	VCC
AA		HA33#	HBREQ0#	SDQ_A59	SDQ_A58	HA35#	HA29#	VSS	HA32#	HA34#	VSS	SDQ_B59	VSS	VSS	VCC		VCC	VCC	VCC	VSS	VCC	VSS
Y	HRS1#	VSS		HEDRDY#	VSS	HA28#	VSS	HA27#	VSS	HA31#	VSS	SDQ_B58	VSS	VCC	VSS		VCC	VCC	VSS	VCC	VSS	VCC
W		HADS#	HHITM#	HTRDY#													VCC	VSS	VCC	VSS	VCC	VSS
	VSS	HA25#	HDRDY#		VSS	VSS		VSS	HADSTB1#	VSS	HA22#	HA30#	RSV	VSS	VCC		VCC	VCC	VSS	VCC	VCC	VCC
		HDBSY#	HHIT#	HLOCK#	HBNR#	VSS	HA19#	VSS	HA26#	HA23#	VSS	HA24#	VSS	VCC	VSS		VCC	VCC	VCC	VCC	VCC	VCC
Т	HRS2#	VSS		HRS0#	VSS	HA21#	VSS	HA18#	HA20#	VSS	HA10#	HA17#	VSS	VSS	VSS		RSV	VCC		VCC	VCC	
R P		HD2#	HD0#	HDEFER#	v 33	HAZ1#	v33	HAT0#	TIA20#	v33	HAT0#	HAIT#	v33	VSS	NC		RSV	VSS		VSS	VSS	
N	VSS	HA14#	HD4#		VSS	HA16#	HA15#	VSS	HA9#	HA12#	VSS	HA11#	VSS	100	VSS		VSS	VSS		VSS	ICH_SYNC#	
M		HD3#	HD7#	HD5#	+D1#	HA13#	VSS	HADSTBO#	VSS	HA8#	HD33#		HCLKP		HCLKN		HD35#	HDSTBN2#		HD41#	VTT	
L	HDSTBN0#	VSS		HD6#								HD30#	VSS		VSS		HD40#	VSS		VSS	VTT	
ĸ		HD8#	HDSTBP0#	HDINV0#	VSS	HA4#	VSS	HREQ2#	HA6#	VSS		VSS	HD34#		HD36#		VSS	HD43#		HD46#	VTT	
J	VSS	HA5#	HD10#		HA3#	VSS	HA7#		HD18#	HD27#		HD25#	HD31#		VSS		HDGTBP2#	HD42#		VSS	VTT	
н										HD23#		VSS	HD32#		HD38#		VSS	VSS		HD45#	VTT	
G		HD11#	HD13#	HD12#	HD9#	VSS	HREQ3#		VSS	HDSTBN1#		VSS	VSS		VSS		VSS	HD44#		VSS	VTT	
F	HD15#	VSS		HD14#		HPCREQ#	HD16#		HDSTBP1#	VSS			HD37#		HD39#		VTT	VSS		HD47#	VTT	
E		HREQ4#	HREQ0#	HD50#			HD17#		VSS	HDSTBP3#		VSS	HD48#		HDINV2#		VTT	VTT		VTT	VTT	
D	VSS	HBPRI#	HREQ1#		HD19#	HD53#	HD51#			HD56#	HD54#	HD61#		HD63#		HACOVREF	HDVREF		VTT	VTT	VTT	
С		NC	HD20#	VSS	HD52#		HD24#		HD55#	HD57#		HD60#	HD59#	HCPURST#			HSCOMP	VTT	VTT		VTT	VSS
B	-	NC	NC	HD22#	HD21#	VSS	HDSTBN3#		HD26#	HD28#	VSS	HDINV3#	HD58#	HD62#		VSS	HSWING	VTT	VTT	VTT	VSS	VSS
A	RSV	NC 40	4.4	VSS	00	HDINV1#	07	00	VSS	0.4	HD49#	00	VSS	00	00	HRCOMP	07	VTT	05	VTT	00	
	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22

Figure 10-1. MCH Ballout Diagram for DDR2 (Top View – Left Side)

21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
	SMA_B6		VCCSM		VCCSM			VCCSM		SDQS_A2#		VSS			SCLK_A4#		VSS		NC	NC	В
WA_B3	VCCSM	VSS	SMA_B11	SBS_B2	VCCSM		VSS	SDQ_A18	SDQ_A23	VSS	SDQ_A16	SDQ_A11		SDQ_A15	VSS	SDQS_A1	SDQS_A1#	NC	NC	NC	в
MA_B4		SMA_B7	SMA_B12	SCKE_B1			SCKE_B3	SDQ_A19	SDQS_A2		SDQ_A17	SDQ_A10		SDQ_A14		SCLK_A1	VSS	SDQ_A9	NC		В
MA_B5	SMA_B8	SMA_B9		SCKE_B2	SCKE_B0		VCCSM		SDQ_A22	SDM_A2	SDQ_A21			SCLK_A4	SCLK_A1#	SDM_A1		SDQ_A13	SDQ_A8	VSS	A
/SS	VCCSM		VCCSM	VCCSM		VCCSM		VSS	VSS		SDQ_A20	VSS		SDQ_B18			SDQ_A2	SDQ A3	SDQ_A12		A١
/SS	SCB_A7		SDQS_A8#	VSS		SDQ_A30		SDM_A3	SDQ_B30		VSS	SDM_B3		SDQ B29	SDQ B23		SDQ_A6		VSS	SDQ_A7	A
/SS	VSS		SDQS_A8	VSS		VSS		VSS	VSS		SDQ_B25	VSS		SDQ_819	VSS	SDM_A0	SDQ_A1	SDQS A0	SDQS A0#	obajn	A
/SS	SCB_A6		VSS	VSS		SDQS_A3		SDQ_A25	VSS		SDQ_B24			2D0_B19	100	SDM_AU	SDQ_AT	SDUS_AU	SDUS_AU		A
CB A2	VSS		SCB A1	SDQ A27		VSS		SDQ B27	SDQS_B3#		SDQS B3	SDQ B28				VSS				VSS	A
CB A3	VSS		SCB A0	SDQ A26		SDQS A3#		SDQ_A29	VSS		VSS	SDQ_B22		SDQS_B2#	SDQS_B2			SDQ_A5	SDQ_A0	100	A
											v33	300_822	SDM_B2	V 3 3	SDQ_B17	VSS	SDQ_B7	SDQ_B3	SDQ_A4		
/SS	VSS		VSS	VSS		VSS		VSS	SDQ_B26			1/00					VSS		VSS	SDQ_B2	A
CB_B4	SCB_A5		SCB_A4	SDQ_A31		SDQ_A28		SDQ_A24		SDQ_B31	SDQ_B16	VSS	SDQ_B21	VSS	SDQ_B20	SDM_B0	SDQ_B6	SDQS_B0#	SDQS_B0		A
/SS	VSS		VSS	RSV_TP[3]		RSV_TP[1]		VSS	SDQ_B11	VSS	SDQ_B10	SDQ_B14	VSS	SDQ_B15	VSS	VSS		SDQ_B1	SDQ_B5	VSS	A
/CC	VCC		VSS	RSV_TP[2]		RSV_TP[0]	VSS										VSS	SDQ_B4	SDQ_B0		A
RSV	VCC		VSS	VSS		VSS	VSS	VSS	SDQ_B13	SCLK_B1#	VSS	SCLK_B1	VSS	SCLK_B4	SCLK_B4#	VSS					A
																	VSS		VSS	SMVREF0	A
งรง	VCC	VCC	VSS	VSS		VSS	VSS	VSS	VSS	SDQ_B9	VSS	SDM_B1	SDQS_B1#	VSS	SDQS_B1	VSS	VSS	SMVREF1	SRCOMP1		A
/SS	VCC	VSS	VCC	VCC		VCC	VSS	VSS	VSS	SDQ_B12	VSS	SDQ_B8	vss	VSS	VSS	VSS		SOCOMPO	VSS	SRCOMP0	A
/CC	VSS	VCC	VSS	VCC													VSS	RSTIN#	SOCOMPI		A
/SS	VCC	VSS	VCC	VCC		VCC	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS		VSS	PWROK	A
/CC	VSS	VCC	VSS	VCC		VCC	VSS	VSS	EXP_COMPO	EXP_COMPI	VSS	DMI_RXP3	DML_RXN3	VSS	VSS	VSS	DMI_TXN3	VSS	VSS		A
/SS	VCC	VSS	VCC	VCC														DMI_TXP3	VSS	DMI_TXN1	A
/CC	VSS	VCC	VSS	VCC		VCC	VCC_EXP	VCC_EXP	VCC_EXP	VSS	DMI_RXN1	DMI_RXP1	VSS	DMI TXP2	DMI TXN2	VSS	DMI RXP2	VSS	DMI TXP1	_	A
/SS	VCC	VCC	VCC	VCC		VCC	VCC_EXP	VCC_EXP	VCC_EXP	VSS	VCC_EXP	VCC_EXP	VSS	VCC EXP	VCC EXP	VSS	DMI RXN2		VSS	DMI_TXN0	Ì
/CC	VSS	VCC	VCC	VCC									100	VCC_EAP	VCC_EAP	100	RSV	VSS		DMI_TXND	v
/CC	VCC	VCC	VCC	VCC		VCC	VCC EXP	VCC EXP	VCC EXP	VSS	RSV	RSV	VSS			VSS	NO V	RSV		VSS	۱
/00	VCC	VCC	VCC	VCC		VCC	VCC_EXP	VCC_EXP	VCC_EXP	VSS	VCC_EXP	VCC_EXP		DML_RXN0	DMI_RXP0		RSV		RSV	100	ι
100	100	VCC	VCC	VCC		100	100_2.14	100_2.0	100_2.5	100	100_25	100_224	VSS	VCC_EXP	VCC_EXP	VSS	_	VSS		DO) (
100	VOO		VOO	1/00		VCC EXP		VCC_EXP	VCC	DO1	DO) (VCC	DO 14	D 011			RSV		VSS	RSV	
/CC	VCC		VCC	VCC			VCC_EXP	VCC_EAP	VSS	RSV	RSV	V33	RSV	RSV	VSS	VSS	-		-		F
/SS	VSS		VCC	VCC		VCC_EXP	VCC_EXP										RSV		-		
SV_TP[6]	VSS		VCC	VCC		VCC_EXP		VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VCC_EXP	VSS		RSV	RSV	VSS	1
/SS	EXTTS#		VCC	VCC		VCC_EXP		VCC_EXP		VSS	VSS	VSS	VSS	RSV	RSV	VSS	RSV	VSS	RSV		N
SV_TP[4]	BSEL2		VCC	VCC		VCC_EXP		VCC_EXP	VSS								RSV		VSS	RSV	
XP_SLR	VSS		VCC	VCC		VCC_EXP		VSS	VSS				RSV	VSS			RSV		RSV		ł
/SS	ALLZTEST		VCC	VCC		VCC_EXP		EXP_RXP2	VSS		VSS	EXP_RXP4		VSS	EXP_RXN7	VSS		RSV	VSS	RSV	•
SEL1	XORTEST		VCC	VCC		VCC_EXP		EXP_RXN2	VSS		EXP_RXN4										ŀ
/SS	VSS		VCC	VCC		VCC_EXP		VSS	EXP_RXP0		VSS	VSS		VSS	EXP_RXP7	VSS	EXP_TXN7	VSS	RSV		C
SEL0	RSV_TP[7]		VCC	VCC		VCC_EXP		VCC_EXP	EXP_RXN0		EXP_RXN3	EXP_RXN5		EXP_RXP5	VSS		EXP_TXP7		VSS	RSV	F
/SS	VSS		VCC	VCC_EXP		VCC_EXP		VCC_EXP	VSS		EXP_RXP3	VSS		VSS			VSS	VSS	RSV		E
/SS	VSS	RSV		VCC_EXP	VCC_EXP		EXP_TXP0		EXP_TXP2	EXP_TXN2	VSS			EXP_TXP5	EXP_TXN5	VSS		EXP_RXN6		VSS	
CA SIMPLE		RSV_TP[5]	VCC_EXP	VCC_EXP			VSS	EXP_TXN0	VSS		EXP_TXP3	EXP_TXN3		VSS			EXP_RXP6		NC		(
/SS	VOCA_EXPPLL	VCC2	VCC_EXP	VCC_EXP	GCI KN		GCLKP	EXP_TXNU	EXP_TXN1	VSS	EXP_RXN1	_		EXP_TXN4	VSS	EXP_TXN6	VSS				E
	NUCK JERPHEL			VCC_EAP			COLINE	VSS	Lor_IAN	EXP_RXP1	LA _RANT			L-~ _1AN4		-or_LAND	VSS				Ā
	VCEA_3GBG		VCC_EXP		VCC_EXP				12			EXP_TXP4			EXP_TXP6		*55	3	2		

Figure 10-2. MCH Ballout Diagram (Top View – Right Side)

10.2 MCH Ballout Table

The following tables list the MCH signal names and ball numbers. The table is sorted by signal name (A-Z).

Table 10-1. MCH Ballout Table – Sorted by Signal Name

Ball	Signal Name
J20	ALLZTEST
F21	BSEL0
H21	BSEL1
L20	BSEL2
V7	DMI_RXN0
AA10	DMI_RXN1
Y4	DMI_RXN2
AC8	DMI_RXN3
V6	DMI_RXP0
AA9	DMI_RXP1
AA4	DMI_RXP2
AC9	DMI_RXP3
Y1	DMI_TXN0
AB1	DMI_TXN1
AA6	DMI_TXN2
AC4	DMI_TXN3
W2	DMI_TXP0
AA2	DMI_TXP1
AA7	DMI_TXP2
AB3	DMI_TXP3
AC11	EXP_COMPI
AC12	EXP_COMPO
F12	EXP_RXN0
B10	EXP_RXN1
H13	EXP_RXN2
F10	EXP_RXN3
H10	EXP_RXN4
F9	EXP_RXN5
D3	EXP_RXN6
J6	EXP_RXN7
G12	EXP_RXP0
A11	EXP_RXP1
J13	EXP_RXP2
E10	EXP_RXP3

Ball	Signal Name
J9	EXP_RXP4
F7	EXP_RXP5
C4	EXP_RXP6
G6	EXP_RXP7
K21	EXP_SLR
C13	EXP_TXN0
B12	EXP_TXN1
D11	EXP_TXN2
C9	EXP_TXN3
B7	EXP_TXN4
D6	EXP_TXN5
B5	EXP_TXN6
G4	EXP_TXN7
D14	EXP_TXP0
B13	EXP_TXP1
D12	EXP_TXP2
C10	EXP_TXP3
A9	EXP_TXP4
D7	EXP_TXP5
A6	EXP_TXP6
F4	EXP_TXP7
M20	EXTTS#
B16	GCLKN
B14	GCLKP
R33	HA10#
N32	HA11#
N34	HA12#
M38	HA13#
N42	HA14#
N37	HA15#
N38	HA16#
R32	HA17#
R36	HA18#
U37	HA19#

Ball	Signal Name
R35	HA20#
R38	HA21#
V33	HA22#
U34	HA23#
U32	HA24#
V42	HA25#
U35	HA26#
Y36	HA27#
Y38	HA28#
AA37	HA29#
J39	HA3#
V32	HA30#
Y34	HA31#
AA35	HA32#
AA42	HA33#
AA34	HA34#
AA38	HA35#
K38	HA4#
J42	HA5#
K35	HA6#
J37	HA7#
M34	HA8#
N35	HA9#
D28	HACCVREF
W42	HADS#
M36	HADSTB0#
V35	HADSTB1#
U39	HBNR#
D42	HBPRI#
AA41	HBREQ0#
M29	HCLKN
M31	HCLKP
C30	HCPURST#
P41	HD0#

Ball	Signal Name
M39	HD1#
J41	HD10#
G42	HD11#
G40	HD12#
G41	HD13#
F40	HD14#
F43	HD15#
F37	HD16#
E37	HD17#
J35	HD18#
D39	HD19#
P42	HD2#
C41	HD20#
B39	HD21#
B40	HD22#
H34	HD23#
C37	HD24#
J32	HD25#
B35	HD26#
J34	HD27#
B34	HD28#
F32	HD29#
M42	HD3#
L32	HD30#
J31	HD31#
H31	HD32#
M33	HD33#
K31	HD34#
M27	HD35#
K29	HD36#
F31	HD37#
H29	HD38#
F29	HD39#
N41	HD4#
L27	HD40#
M24	HD41#
J26	HD42#
K26	HD43#
G26	HD44#
H24	HD45#

Ball	Signal Name
K24	HD46#
F24	HD47#
E31	HD48#
A33	HD49#
M40	HD5#
E40	HD50#
D37	HD51#
C39	HD52#
D38	HD53#
D33	HD54#
C35	HD55#
D34	HD56#
C34	HD57#
B31	HD58#
C31	HD59#
L40	HD6#
C32	HD60#
D32	HD61#
B30	HD62#
D30	HD63#
M41	HD7#
K42	HD8#
G39	HD9#
U42	HDBSY#
P40	HDEFER#
K40	HDINV0#
A38	HDINV1#
E29	HDINV2#
B32	HDINV3#
V41	HDRDY#
L43	HDSTBN0#
G34	HDSTBN1#
M26	HDSTBN2#
B37	HDSTBN3#
K41	HDSTBP0#
F35	HDSTBP1#
J27	HDSTBP2#
E34	HDSTBP3#
D27	HDVREF
Y40	HEDRDY#

	[]
Ball	Signal Name
U41	HHIT#
W41	HHITM#
U40	HLOCK#
F38	HPCREQ#
A28	HRCOMP
E41	HREQ0#
D41	HREQ1#
K36	HREQ2#
G37	HREQ3#
E42	HREQ4#
T40	HRS0#
Y43	HRS1#
T43	HRS2#
C27	HSCOMP
B27	HSWING
W40	HTRDY#
N23	ICH_SYNC#
BC43	NC
BC42	NC
BC2	NC
BC1	NC
BB43	NC
BB3	NC
BB2	NC
BB1	NC
BA2	NC
P29	NC
C42	NC
C2	NC
B43	NC
B42	NC
B41	NC
B3	NC
B2	NC
A42	NC
AD1	PWROK
AE3	RSTIN#
M7	RSV
L1	RSV
R10	RSV

Ball	Signal Name
R7	RSV
T1	RSV
V10	RSV
F1	RSV
K8	RSV
M6	RSV
K2	RSV
R11	RSV
R8	RSV
P2	RSV
V9	RSV
E2	RSV
K9	RSV
M4	RSV
N2	RSV
P4	RSV
U4	RSV
V2	RSV
W4	RSV
J1	RSV
K4	RSV
L4	RSV
M2	RSV
N3	RSV
T4	RSV
U2	RSV
V3	RSV
G2	RSV
J3	RSV
AJ27	RSV
AJ26	RSV
AJ24	RSV
AJ23	RSV
AJ21	RSV
AG27	RSV
AG26	RSV
AG25	RSV
AG24	RSV
AG23	RSV
AG22	RSV

Ball	Signal Name
AG21	RSV
V31	RSV
R27	RSV
P27	RSV
D19	RSV
A43	RSV
AK15	RSV_TP0
AL15	RSV_TP1
AK17	RSV_TP2
AL17	RSV_TP3
L21	RSV_TP4
C19	RSV_TP5
N21	RSV_TP6
F20	RSV_TP7
BC33	SBS_A0
BA32	SBS_A1
BB25	SBS_A2
BA23	SBS_B0
AY23	SBS_B1
BB17	SBS_B2
AY37	SCAS_A#
AW42	SCAS_B#
AP18	SCB_A0
AR18	SCB_A1
AR21	SCB_A2
AP21	SCB_A3
AM18	SCB_A4
AM20	SCB_A5
AT20	SCB_A6
AV20	SCB_A7
AM24	SCB_B0
AM23	SCB_B1
AV24	SCB_B2
AM26	SCB_B3
AM21	SCB_B4
AN23	SCB_B5
AP24	SCB_B6
AT24	SCB_B7
AY25	SCKE_A0
BC24	SCKE_A1

Dell	Cirruel News
Ball	Signal Name
BA25	SCKE_A2
AY24	SCKE_A3
AY16	SCKE_B0
BA17	SCKE_B1
AY17	SCKE_B2
BA14	SCKE_B3
AY32	SCLK_A0
AW32	SCLK_A0#
BA5	SCLK_A1
AY6	SCLK_A1#
AK42	SCLK_A2
AK41	SCLK_A2#
BB31	SCLK_A3
BA31	SCLK_A3#
AY7	SCLK_A4
BC6	SCLK_A4#
AH43	SCLK_A5
AH40	SCLK_A5#
AM29	SCLK_B0
AM27	SCLK_B0#
AJ9	SCLK_B1
AJ11	SCLK_B1#
AL38	SCLK_B2
AL36	SCLK_B2#
AP26	SCLK_B3
AR26	SCLK_B3#
AJ7	SCLK_B4
AJ6	SCLK_B4#
AJ38	SCLK_B5
AJ36	SCLK_B5#
BB35	SCS_A0#
BC38	SCS_A1#
BA34	SCS_A2#
BA39	SCS_A3#
BA40	SCS_B0#
AU40	SCS_B1#
AW40	SCS_B2#
AU41	SCS_B3#
AU5	SDM_A0
AY5	SDM_A1
BA40 AU40 AW40 AU41 AU5	SCS_B0# SCS_B1# SCS_B2# SCS_B3# SDM_A0

Ball	Signal Name
AY11	SDM_A2
AV13	SDM_A3
AT34	SDM_A4
AP42	SDM_A5
AG40	SDM_A6
AC40	SDM_A7
AM5	SDM_B0
AG9	SDM_B1
AP8	SDM_B2
AV9	SDM_B3
AR29	SDM_B4
AR38	SDM_B5
AJ39	SDM_B6
AD37	SDM_B7
AR2	SDQ_A0
AU4	SDQ_A1
BA9	SDQ_A10
BB9	SDQ_A11
AW2	SDQ_A12
AY3	SDQ_A13
BA7	SDQ_A14
BB7	SDQ_A15
BB10	SDQ_A16
BA10	SDQ_A17
BB13	SDQ_A18
BA13	SDQ_A19
AW4	SDQ_A2
AW10	SDQ_A20
AY10	SDQ_A21
AY12	SDQ_A22
BB12	SDQ_A23
AM13	SDQ_A24
AT13	SDQ_A25
AP17	SDQ_A26
AR17	SDQ_A27
AM15	SDQ_A28
AP13	SDQ_A29
AW3	SDQ_A3
AV15	SDQ_A30
AM17	

Ball	Signal Name
AP32	SDQ_A32
AV34	SDQ_A33
AU37	SDQ_A34
AU39	SDQ_A35
AV32	SDQ_A36
AT32	SDQ_A37
AR34	SDQ_A38
AV38	SDQ_A39
AP2	SDQ_A4
AP39	SDQ_A40
AP40	SDQ_A41
AM41	SDQ_A42
AM42	SDQ_A43
AR41	SDQ_A44
AR42	SDQ_A45
AN43	SDQ_A46
AM40	SDQ_A47
AL39	SDQ_A48
AK40	SDQ_A49
AR3	SDQ_A5
AF39	SDQ_A50
AE40	SDQ_A51
AL41	SDQ_A52
AL42	SDQ_A53
AF41	SDQ_A54
AF42	SDQ_A55
AD40	SDQ_A56
AD43	SDQ_A57
AA39	SDQ_A58
AA40	SDQ_A59
AV4	SDQ_A6
AE42	SDQ_A60
AE41	SDQ_A61
AB41	SDQ_A62
AB42	SDQ_A63
AV1	SDQ_A7
AY2	SDQ_A8
BA3	SDQ_A9
AK2	SDQ_B0
AL3	SDQ_B1

Ball	Signal Name
AL10	SDQ_B10
AL12	SDQ_B11
AF11	SDQ_B12
AJ12	SDQ_B13
AL9	SDQ_B14
AL7	SDQ_B15
AM10	SDQ_B16
AP6	SDQ_B17
AW7	SDQ_B18
AU7	SDQ_B19
AN1	SDQ_B2
AM6	SDQ_B20
AM8	SDQ_B21
AP9	SDQ_B22
AV6	SDQ_B23
AT10	SDQ_B24
AU10	SDQ_B25
AN12	SDQ_B26
AR13	SDQ_B27
AR9	SDQ_B28
AV7	SDQ_B29
AP3	SDQ_B3
AV12	SDQ_B30
AM11	SDQ_B31
AR27	SDQ_B32
AN29	SDQ_B33
AR31	SDQ_B34
AM31	SDQ_B35
AP27	SDQ_B36
AU27	SDQ_B37
AP31	SDQ_B38
AU31	SDQ_B39
AK3	SDQ_B4
AP36	SDQ_B40
AP37	SDQ_B41
AM33	SDQ_B42
AJ31	SDQ_B43
AR35	SDQ_B44
AU38	SDQ_B45
AM38	SDQ_B46

Ball	Signal Name
AN32	SDQ_B47
AJ32	SDQ_B48
AJ34	SDQ_B49
AL2	SDQ_B5
AF32	SDQ_B50
AF34	SDQ_B51
AL32	SDQ_B52
AL34	SDQ_B53
AG35	SDQ_B54
AD32	SDQ_B55
AC32	SDQ_B56
AD34	SDQ_B57
Y32	SDQ_B58
AA32	SDQ_B59
AM4	SDQ_B6
AF35	SDQ_B60
AF37	SDQ_B61
AC34	SDQ_B62
AC35	SDQ_B63
AP4	SDQ_B7
AF9	SDQ_B8
AG11	SDQ_B9
AU3	SDQS_A0
AU2	SDQS_A0#
BB5	SDQS_A1
BB4	SDQS_A1#
BA12	SDQS_A2
BC11	SDQS_A2#
AT15	SDQS_A3
AP15	SDQS_A3#
AU35	SDQS_A4
AW35	SDQS_A4#
AN40	SDQS_A5
AP41	SDQS_A5#
AG42	SDQS_A6
AG41	SDQS_A6#
AC42	SDQS_A7
AC41	SDQS_A7#
AU18	SDQS_A8
AV18	SDQS_A8#

Ball	Signal Name
AM2	SDQS_B0
AM3	SDQS_B0#
AG6	SDQS_B1
AG8	SDQS_B1#
AR6	SDQS_B2
AR7	SDQS_B2#
AR10	SDQS_B3
AR12	SDQS_B3#
AT29	SDQS_B4
AV29	SDQS_B4#
AP35	SDQS_B5
AM35	SDQS_B5#
AG34	SDQS_B6
AG32	SDQS_B6#
AD36	SDQS_B7
AD39	SDQS_B7#
AR23	SDQS_B8
AP23	SDQS_B8#
BB32	SMA_A0
BA30	SMA_A1
AY33	SMA_A10
BB26	SMA_A11
BA26	SMA_A12
AW37	SMA_A13
BB30	SMA_A2
AY30	SMA_A3
BC28	SMA_A4
BA27	SMA_A5
AY28	SMA_A6
AY27	SMA_A7
BB27	SMA_A8
AW27	SMA_A9
AW23	SMA_B0
BA22	SMA_B1
BB23	SMA_B10
BB18	SMA_B11
BA18	SMA_B12
AV40	SMA_B13
BB22	SMA_B2
BB21	SMA_B3

Ball	Signal Name
BA21	SMA_B4
AY21	SMA_B5
BC20	SMA_B6
BA19	SMA_B7
AY20	SMA_B8
AY19	SMA_B9
AH1	SMVREF0
AG3	SMVREF1
AF3	SOCOMP0
AE2	SOCOMP1
BA37	SODT_A0
AY38	SODT_A1
BB37	SODT_A2
AY39	SODT_A3
AY42	SODT_B0
AV43	SODT_B1
AW41	SODT_B2
AU42	SODT_B3
AY34	SRAS_A#
BB40	SRAS_B#
AF1	SRCOMP0
AG2	SRCOMP1
BA35	SWE_A#
BA41	SWE_B#
AK27	VCC
AK26	VCC
AK24	VCC
AK23	VCC
AK21	VCC
AK20	VCC
AJ29	VCC
AJ20	VCC
AG30	VCC
AG20	VCC
AG19	VCC
AF30	VCC
AF29	VCC
AF27	VCC
AF26	VCC
AF24	VCC

Ball	Signal Name
AF22	VCC
AF20	VCC
AF18	VCC
AF17	VCC
AF15	VCC
AE27	VCC
AE26	VCC
AE25	VCC
AE23	VCC
AE21	VCC
AE19	VCC
AE17	VCC
AD29	VCC
AD27	VCC
AD26	VCC
AD24	VCC
AD22	VCC
AD20	VCC
AD18	VCC
AD17	VCC
AD15	VCC
AC30	VCC
AC29	VCC
AC27	VCC
AC26	VCC
AC25	VCC
AC23	VCC
AC21	VCC
AC19	VCC
AC17	VCC
AC15	VCC
AB27	VCC
AB26	VCC
AB24	VCC
AB22	VCC
AB20	VCC
AB18	VCC
AB17	VCC
AA29	VCC
AA27	VCC

Ball	Signal Name
AA26	VCC
AA25	VCC
AA23	VCC
AA21	VCC
AA19	VCC
AA17	VCC
AA15	VCC
Y30	VCC
Y27	VCC
Y26	VCC
Y24	VCC
Y22	VCC
Y20	VCC
Y19	VCC
Y18	VCC
Y17	VCC
Y15	VCC
W27	VCC
W25	VCC
W23	VCC
W21	VCC
W19	VCC
W18	VCC
W17	VCC
V29	VCC
V27	VCC
V26	VCC
V24	VCC
V23	VCC
V22	VCC
V21	VCC
V20	VCC
V19	VCC
V18	VCC
V17	VCC
V15	VCC
U30	VCC
U27	VCC
U26	VCC
U25	VCC

Ball	Signal Name
U24	VCC
U23	VCC
U22	VCC
U21	VCC
U20	VCC
U19	VCC
U18	VCC
U17	VCC
U15	VCC
R26	VCC
R24	VCC
R23	VCC
R21	VCC
R20	VCC
R18	VCC
R17	VCC
P18	VCC
P17	VCC
N18	VCC
N17	VCC
M18	VCC
M17	VCC
L18	VCC
L17	VCC
K18	VCC
K17	VCC
J18	VCC
J17	VCC
H18	VCC
H17	VCC
G18	VCC
G17	VCC
F18	VCC
F17	VCC
E18	VCC
AA14	VCC_EXP
AA13	VCC_EXP
AA12	VCC_EXP
Y14	VCC_EXP
Y13	VCC_EXP

Ball	Signal Name
Y12	VCC_EXP
Y10	VCC_EXP
Y9	VCC_EXP
Y7	VCC_EXP
Y6	VCC_EXP
V14	VCC_EXP
V13	VCC_EXP
V12	VCC_EXP
U14	VCC_EXP
U13	VCC_EXP
U12	VCC_EXP
U10	VCC_EXP
U9	VCC_EXP
U7	VCC_EXP
U6	VCC_EXP
R15	VCC_EXP
R14	VCC_EXP
R13	VCC_EXP
P15	VCC_EXP
P14	VCC_EXP
N15	VCC_EXP
N13	VCC_EXP
N12	VCC_EXP
N11	VCC_EXP
N10	VCC_EXP
N9	VCC_EXP
N8	VCC_EXP
N7	VCC_EXP
N6	VCC_EXP
M15	VCC_EXP
M13	VCC_EXP
L15	VCC_EXP
L13	VCC_EXP
K15	VCC_EXP
J15	VCC_EXP
H15	VCC_EXP
G15	VCC_EXP
F15	VCC_EXP
F13	VCC_EXP
E17	VCC_EXP

D	O'rea at bi
Ball	Signal Name
E15	VCC_EXP
E13	VCC_EXP
D17	VCC_EXP
D16	VCC_EXP
C18	VCC_EXP
C17	VCC_EXP
B18	VCC_EXP
B17	VCC_EXP
A18	VCC_EXP
A16	VCC_EXP
B19	VCC2
A20	VCCA_3GBG
B20	VCCA_EXPPLL
A22	VCCA_HPLL
C21	VCCA_SMPLL
BC40	VCCSM
BC35	VCCSM
BC31	VCCSM
BC26	VCCSM
BC22	VCCSM
BC18	VCCSM
BC16	VCCSM
BC13	VCCSM
BB42	VCCSM
BB38	VCCSM
BB33	VCCSM
BB28	VCCSM
BB24	VCCSM
BB20	VCCSM
BB16	VCCSM
AY43	VCCSM
AY41	VCCSM
AY14	VCCSM
AW34	VCCSM
AW31	VCCSM
AW29	VCCSM
AW26	VCCSM
AW24	VCCSM
AW20	VCCSM
AW18	VCCSM
	L

Ball	Signal Name
AW17	VCCSM
AW15	VCCSM
AV42	VCCSM
AV31	VCCSM
AV23	VCCSM
BC9	VSS
BC4	VSS
BB41	VSS
BB39	VSS
BB34	VSS
BB19	VSS
BB14	VSS
BB11	VSS
BB6	VSS
BA42	VSS
BA4	VSS
AY1	VSS
AW21	VSS
AW13	VSS
AW12	VSS
AW9	VSS
AV37	VSS
AV35	VSS
AV27	VSS
AV26	VSS
AV21	VSS
AV17	VSS
AV10	VSS
AV2	VSS
AU34	VSS
AU32	VSS
AU29	VSS
AU26	VSS
AU24	VSS
AU23	VSS
AU21	VSS
AU20	VSS
AU17	VSS
AU15	VSS
AU13	VSS

Ball	Signal Name
AU12	VSS
AU9	VSS
AU6	VSS
AT31	VSS
AT27	VSS
AT26	VSS
AT23	VSS
AT21	VSS
AT18	VSS
AT17	VSS
AT12	VSS
AR43	VSS
AR39	VSS
AR37	VSS
AR32	VSS
AR24	VSS
AR20	VSS
AR15	VSS
AR5	VSS
AR1	VSS
AP38	VSS
AP34	VSS
AP29	VSS
AP20	VSS
AP12	VSS
AP10	VSS
AP7	VSS
AP5	VSS
AN42	VSS
AN31	VSS
AN27	VSS
AN26	VSS
AN24	VSS
AN21	VSS
AN20	VSS
AN18	VSS
AN17	VSS
AN15	VSS
AN13	VSS
AN4	VSS

Ball	Signal Name
AN2	VSS
AM39	VSS
AM37	VSS
AM36	VSS
AM34	VSS
AM9	VSS
AM7	VSS
AL43	VSS
AL37	VSS
AL35	VSS
AL33	VSS
AL31	VSS
AL29	VSS
AL27	VSS
AL26	VSS
AL24	VSS
AL23	VSS
AL21	VSS
AL20	VSS
AL18	VSS
AL13	VSS
AL11	VSS
AL8	VSS
AL6	VSS
AL5	VSS
AL1	VSS
AK30	VSS
AK29	VSS
AK18	VSS
AK14	VSS
AK4	VSS
AJ37	VSS
AJ35	VSS
AJ33	VSS
AJ30	VSS
AJ18	VSS
AJ17	VSS
AJ15	VSS
AJ14	VSS
AJ13	VSS

Ball	Signal Name
AJ10	VSS
AJ8	VSS
AJ5	VSS
AH42	VSS
AH4	VSS
AH2	VSS
AG39	VSS
AG38	VSS
AG37	VSS
AG36	VSS
AG33	VSS
AG31	VSS
AG29	VSS
AG18	VSS
AG17	VSS
AG15	VSS
AG14	VSS
AG13	VSS
AG12	VSS
AG10	VSS
AG7	VSS
AG5	VSS
AG4	VSS
AF43	VSS
AF38	VSS
AF36	VSS
AF33	VSS
AF31	VSS
AF25	VSS
AF23	VSS
AF21	VSS
AF19	VSS
AF14	VSS
AF13	VSS
AF12	VSS
AF10	VSS
AF8	VSS
AF7	VSS
AF6	VSS
AF5	VSS

int_{el}.

Ball	Signal Name	
AF2	VSS	
AE24	VSS	
AE22	VSS	
AE20	VSS	
AE18	VSS	
AE4	VSS	
AD42	VSS	
AD38	VSS	
AD35	VSS	
AD33	VSS	
AD31	VSS	
AD30	VSS	
AD25	VSS	
AD23	VSS	
AD21	VSS	
AD19	VSS	
AD14	VSS	
AD13	VSS	
AD12	VSS	
AD11	VSS	
AD10	VSS	
AD9	VSS	
AD8	VSS	
AD7	VSS	
AD6	VSS	
AD5	VSS	
AD4	VSS	
AD2	VSS	
AC39	VSS	
AC38	VSS	
AC37	VSS	
AC36	VSS	
AC33	VSS	
AC31	VSS	
AC24	VSS	
AC22	VSS	
AC20	VSS	
AC18	VSS	
AC14	VSS	
AC13	VSS	

Ball	Signal Name
AC10	VSS
AC7	VSS
AC6	VSS
AC5	VSS
AC3	VSS
AC2	VSS
AB43	VSS
AB25	VSS
AB23	VSS
AB21	VSS
AB19	VSS
AB2	VSS
AA36	VSS
AA33	VSS
AA31	VSS
AA30	VSS
AA24	VSS
AA22	VSS
AA20	VSS
AA18	VSS
AA11	VSS
AA8	VSS
AA5	VSS
AA3	VSS
Y42	VSS
Y39	VSS
Y37	VSS
Y35	VSS
Y33	VSS
Y31	VSS
Y29	VSS
Y25	VSS
Y23	VSS
Y21	VSS
Y11	VSS
Y8	VSS
Y5	VSS
Y2	VSS
W26	VSS
W24	VSS

Ball	Signal Name
W22	VSS
W20	VSS
W3	VSS
V43	VSS
V39	VSS
V38	VSS
V37	VSS
V36	VSS
V34	VSS
V30	VSS
V25	VSS
V11	VSS
V8	VSS
V5	VSS
V1	VSS
U38	VSS
U36	VSS
U33	VSS
U31	VSS
U29	VSS
U11	VSS
U8	VSS
U5	VSS
U3	VSS
T42	VSS
T2	VSS
R39	VSS
R37	VSS
R34	VSS
R31	VSS
R30	VSS
R29	VSS
R12	VSS
R9	VSS
R6	VSS
R5	VSS
P30	VSS
P26	VSS
P24	VSS
P23	VSS

Ball	Signal Name
P21	VSS
P20	VSS
P3	VSS
N43	VSS
N39	VSS
N36	VSS
N33	VSS
N31	VSS
N29	VSS
N27	VSS
N26	VSS
N24	VSS
N20	VSS
N5	VSS
N1	VSS
M37	VSS
M35	VSS
M21	VSS
M11	VSS
M10	VSS
M9	VSS
M8	VSS
M5	VSS
M3	VSS
L42	VSS
L31	VSS
L29	VSS
L26	VSS
L24	VSS
L12	VSS
L2	VSS
K39	VSS
K37	VSS
K34	VSS
K32	VSS
K27	VSS
K20	VSS
K13	VSS
K12	VSS
K10	VSS

Ball	Signal Name
K7	VSS
K6	VSS
K5	VSS
K3	VSS
J43	VSS
J38	VSS
J29	VSS
J24	VSS
J21	VSS
J12	VSS
J10	VSS
J7	VSS
J5	VSS
J2	VSS
H32	VSS
H27	VSS
H26	VSS
H12	VSS
G38	VSS
G35	VSS
G32	VSS
G31	VSS
G29	VSS
G27	VSS
G24	VSS
G21	VSS
G20	VSS
G13	VSS
G10	VSS
G9	VSS
G7	VSS
G5	VSS
G3	VSS
F42	VSS
F34	VSS
F26	VSS
F6	VSS
F2	VSS
E35	VSS
E32	VSS

Ball	Signal Name
E21	VSS
E20	VSS
E12	VSS
E9	VSS
E7	VSS
E4	VSS
E3	VSS
D43	VSS
D21	VSS
D20	VSS
D10	VSS
D5	VSS
D2	VSS
D1	VSS
C40	VSS
C22	VSS
C14	VSS
C12	VSS
C7	VSS
C5	VSS
C3	VSS
B38	VSS
B33	VSS
B28	VSS
B23	VSS
B22	VSS
B21	VSS
B11	VSS
B9	VSS
B6	VSS
B4	VSS
A40	VSS
A35	VSS
A31	VSS
A13	VSS
A4	VSS
M23	VTT
L23	VTT
K23	VTT
J23	VTT

Ballout and Package Information

Ball	Signal Name
H23	VTT
G23	VTT
F27	VTT
F23	VTT
E27	VTT
E26	VTT
E24	VTT
E23	VTT
D25	VTT
D24	VTT
D23	VTT
C26	VTT
C25	VTT
C23	VTT
B26	VTT
B25	VTT
B24	VTT
A26	VTT
A24	VTT
H20	XORTEST

Signal Name EXP_COMPI EXP_COMPO

intel

Ball	Signal Name	Ball	Signal Name	Ball
A11	EXP_RXP1	AA3	VSS	AC11
A13	VSS	AA30	VSS	AC12
A16	VCC_EXP	AA31	VSS	AC13
A18	VCC_EXP	AA32	SDQ_B59	AC14
A20	VCCA_3GBG	AA33	VSS	AC15
A22	VCCA_HPLL	AA34	HA34#	AC17
A24	VTT	AA35	HA32#	AC18
A26	VTT	AA36	VSS	AC19
A28	HRCOMP	AA37	HA29#	AC2
A31	VSS	AA38	HA35#	AC20
A33	HD49#	AA39	SDQ_A58	AC21
A35	VSS	AA4	DMI_RXP2	AC22
A38	HDINV1#	AA40	SDQ_A59	AC23
A4	VSS	AA41	HBREQ0#	AC24
A40	VSS	AA42	HA33#	AC25
A42	NC	AA5	VSS	AC26
A43	RSV	AA6	DMI_TXN2	AC27
A6	EXP_TXP6	AA7	DMI_TXP2	AC29
A9	EXP_TXP4	AA8	VSS	AC3
AA10	DMI_RXN1	AA9	DMI_RXP1	AC30
AA11	VSS	AB1	DMI_TXN1	AC31
AA12	VCC_EXP	AB17	VCC	AC32
AA13	VCC_EXP	AB18	VCC	AC33
AA14	VCC_EXP	AB19	VSS	AC34
AA15	VCC	AB2	VSS	AC35
AA17	VCC	AB20	VCC	AC36
AA18	VSS	AB21	VSS	AC37
AA19	VCC	AB22	VCC	AC38
AA2	DMI_TXP1	AB23	VSS	AC39
AA20	VSS	AB24	VCC	AC4
AA21	VCC	AB25	VSS	AC40
AA22	VSS	AB26	VCC	AC41
AA23	VCC	AB27	VCC	AC42
AA24	VSS	AB3	DMI_TXP3	AC5
AA25	VCC	AB41	SDQ_A62	AC6
AA26	VCC	AB42	SDQ_A63	AC7
AA27	VCC	AB43	VSS	AC8
AA29	VCC	AC10	VSS	AC9

Table 10-2. MCH Ballout Table – Sorted by Ball Name

ACIZ			
AC13	VSS		
AC14	VSS		
AC15	VCC		
AC17	VCC		
AC18	VSS		
AC19	VCC		
AC2	VSS		
AC20	VSS		
AC21	VCC		
AC22	VSS		
AC23	VCC		
AC24	VSS		
AC25	VCC		
AC26	VCC		
AC27	VCC		
AC29	VCC		
AC3	VSS		
AC30	VCC		
AC31	VSS		
AC32	SDQ_B56		
AC33	VSS		
AC34	SDQ_B62		
AC35	SDQ_B63		
AC36	VSS		
AC37	VSS		
AC38	VSS		
AC39	VSS		
AC4	DMI_TXN3		
AC40	SDM_A7		
AC41	SDQS_A7#		
AC42	SDQS_A7		
AC5	VSS		
AC6	VSS		
AC7	VSS		
AC8	DMI_RXN3		
AC9	DMI_RXP3		

Ball	Signal Name
AD1	PWROK
AD10	VSS
AD11	VSS
AD12	VSS
AD13	VSS
AD14	VSS
AD15	VCC
AD17	VCC
AD18	VCC
AD19	VSS
AD2	VSS
AD20	VCC
AD21	VSS
AD22	VCC
AD23	VSS
AD24	VCC
AD25	VSS
AD26	VCC
AD27	VCC
AD29	VCC
AD30	VSS
AD31	VSS
AD32	SDQ_B55
AD33	VSS
AD34	SDQ_B57
AD35	VSS
AD36	SDQS_B7
AD37	SDM_B7
AD38	VSS
AD39	SDQS_B7#
AD4	VSS
AD40	SDQ_A56
AD42	VSS
AD43	SDQ_A57
AD5	VSS
AD6	VSS
AD7	VSS
AD8	VSS
AD9	VSS
AE17	VCC

Ball	Signal Name
AE18	VSS
AE19	VCC
AE2	SOCOMP1
AE20	VSS
AE21	VCC
AE22	VSS
AE23	VCC
AE24	VSS
AE25	VCC
AE26	VCC
AE27	VCC
AE3	RSTIN#
AE4	VSS
AE40	SDQ_A51
AE41	SDQ_A61
AE42	SDQ_A60
AF1	SRCOMP0
AF10	VSS
AF11	SDQ_B12
AF12	VSS
AF13	VSS
AF14	VSS
AF15	VCC
AF17	VCC
AF18	VCC
AF19	VSS
AF2	VSS
AF20	VCC
AF21	VSS
AF22	VCC
AF23	VSS
AF24	VCC
AF25	VSS
AF26	VCC
AF27	VCC
AF29	VCC
AF3	SOCOMP0
AF30	VCC
AF31	VSS
AF32	SDQ_B50

Ball	Signal Name
AF33	VSS
AF34	SDQ_B51
AF35	SDQ_B60
AF36	VSS
AF37	SDQ_B61
AF38	VSS
AF39	SDQ_A50
AF41	SDQ_A54
AF42	SDQ_A55
AF43	VSS
AF5	VSS
AF6	VSS
AF7	VSS
AF8	VSS
AF9	SDQ_B8
AG10	VSS
AG11	SDQ_B9
AG12	VSS
AG13	VSS
AG14	VSS
AG15	VSS
AG17	VSS
AG18	VSS
AG19	VCC
AG2	SRCOMP1
AG20	VCC
AG21	RSV
AG22	RSV
AG23	RSV
AG24	RSV
AG25	RSV
AG26	RSV
AG27	RSV
AG29	VSS
AG3	SMVREF1
AG30	VCC
AG31	VSS
AG32	SDQS_B6#
AG33	VSS
AG34	SDQS_B6

Ball Signa	al Name
AG35 SD0	Q_B54
AG36 V	/SS
AG37 V	/SS
AG38 V	/SS
AG39 V	/SS
AG4 V	/SS
AG40 SD	M_A6
AG41 SDQ	S_A6#
AG42 SDC	QS_A6
AG5 V	/SS
AG6 SD0	QS_B1
AG7 V	/SS
AG8 SDQ	S_B1#
AG9 SD	M_B1
AH1 SMV	/REF0
AH2 V	/SS
AH4 V	/SS
AH40 SCL	K_A5#
AH42 V	/SS
AH43 SCI	_K_A5
AJ10 V	/SS
AJ11 SCL	K_B1#
AJ12 SD0	Q_B13
AJ13 V	/SS
AJ14 V	/SS
AJ15 V	/SS
AJ17 \	/SS
AJ18 V	/SS
AJ20 V	/CC
AJ21 R	RSV
AJ23 R	RSV
AJ24 F	RSV
AJ26 R	RSV
AJ27 R	RSV
AJ29 V	/CC
AJ30 V	/SS
AJ31 SD0	Q_B43
AJ32 SD0	Q_B48
AJ33 V	/SS
AJ34 SD0	Q_B49

Ball	Signal Name
AJ35	VSS
AJ36	SCLK_B5#
AJ37	VSS
AJ38	SCLK_B5
AJ39	SDM_B6
AJ5	VSS
AJ6	SCLK_B4#
AJ7	SCLK_B4
AJ8	VSS
AJ9	SCLK_B1
AK14	VSS
AK15	RSV_TP0
AK17	RSV_TP2
AK18	VSS
AK2	SDQ_B0
AK20	VCC
AK21	VCC
AK23	VCC
AK24	VCC
AK26	VCC
AK27	VCC
AK29	VSS
AK3	SDQ_B4
AK30	VSS
AK4	VSS
AK40	SDQ_A49
AK41	SCLK_A2#
AK42	SCLK_A2
AL1	VSS
AL10	SDQ_B10
AL11	VSS
AL12	SDQ_B11
AL13	VSS
AL15	RSV_TP1
AL17	RSV_TP3
AL18	VSS
AL2	SDQ_B5
AL20	VSS
AL21	VSS
AL23	VSS

Ball Signal Name AL24 VSS AL26 VSS AL27 VSS AL29 VSS AL3 SDQ_B1 AL31 VSS AL32 SDQ_B52 AL33 VSS AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL36 SCLK_B2 AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL44 SDQ_B14 AM10 SDQ_B14 AM11 SDQ_A24 AM13 SDQ_A24 AM14 SCB_A5 AM21 SCB_B1 <		
AL26 VSS AL27 VSS AL29 VSS AL3 SDQ_B1 AL31 VSS AL32 SDQ_B52 AL33 VSS AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL43 VSS AL43 VSS AL45 VSS AL45 VSS AL45 VSS AL40 SDQ_B14 AM10 SDQ_B14 AM11 SDQ_A24 AM11 SDQ_A24 AM11 SDQ_A24 AM13 SDQ_A24 AM15 SDQ_A31 AM16 SCB_A5 AM20 SCB_A5 AM21 SCB_B3 </td <td>Ball</td> <td>Signal Name</td>	Ball	Signal Name
AL27 VSS AL29 VSS AL3 SDQ_B1 AL31 VSS AL32 SDQ_B52 AL33 VSS AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL43 VSS AL43 VSS AL45 VSS AL45 VSS AL5 VSS AL6 VSS AL7 SDQ_B14 AM10 SDQ_B2 AM11 SDQ_A24 AM13 SDQ_A24 AM15 SDQ_A31 AM16 SCB_A4 AM20 SCB_A5 AM21 SCB_B0	AL24	VSS
AL29 VSS AL3 SDQ_B1 AL31 VSS AL32 SDQ_B52 AL33 VSS AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL43 VSS AL43 VSS AL44 SDQ_B15 AL5 VSS AL7 SDQ_B14 AM10 SDQ_B14 AM11 SDQ_A24 AM13 SDQ_A24 AM13 SDQ_A23 AM14 SCB_A4 AM20 SCB_A5 AM21 SCB_B4 AM22 SCB_	AL26	VSS
AL3 SDQ_B1 AL31 VSS AL32 SDQ_B52 AL33 VSS AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL43 VSS AL42 SDQ_A53 AL43 VSS AL44 SDQ_B15 AL6 VSS AL6 VSS AL7 SDQ_B14 AM10 SDQ_B14 AM11 SDQ_A24 AM13 SDQ_A24 AM15 SDQ_A23 AM16 SCB_A4 AM20 SCB_A5 AM21 SCB_B4 AM22 SDQS_B0 AM24 SCB_B3 AM25 SCLK_B0# AM26 SCLK_B0# AM3	AL27	VSS
AL31 VSS AL32 SDQ_B52 AL33 VSS AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL42 SDQ_B15 AL4 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B13 AM11 SDQ_A31 AM13 SDQ_A24 AM15 SDQ_A31 AM15 SDQ_A31 AM16 SCB_A4 AM20 SCB_A5 AM21 SCB_B1 AM24 SCB_B1 AM25 SCB_B3 AM26 SCB_B3 AM27 SCLK_B0 AM28 SDQS_B0# AM31 SDQ_B35	AL29	VSS
AL32 SDQ_B52 AL33 VSS AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL43 VSS AL42 SDQ_B15 AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B14 AM11 SDQ_B31 AM13 SDQ_A24 AM13 SDQ_A31 AM13 SDQ_A31 AM14 SCB_A4 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM25 SCLK_B0# AM26 SCLK_B0# AM27 SCLK_B0# AM31 SDQ_B35	AL3	SDQ_B1
AL33 VSS AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A52 AL42 SDQ_A53 AL43 VSS AL42 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL45 VSS AL6 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B31 AM11 SDQ_A24 AM13 SDQ_A24 AM15 SDQ_A28 AM17 SDQ_A31 AM18 SCB_A4 AM20 SCB_A5 AM21 SCB_B1 AM23 SCB_B1 AM24 SCB_B3 AM25 SCLK_B0# AM26 SCLK_B0 AM3 SDQ_B35	AL31	VSS
AL34 SDQ_B53 AL35 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A52 AL42 SDQ_A53 AL43 VSS AL41 SDQ_A53 AL42 SDQ_A53 AL43 VSS AL45 VSS AL6 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B31 AM11 SDQ_A24 AM13 SDQ_A23 AM14 SCB_A4 AM20 SCB_A5 AM21 SCB_A5 AM21 SCB_B1 AM24 SCB_B3 AM25 SCLK_B0# AM26 SCLK_B0# AM27 SCLK_B0# AM31 SDQ_B35	AL32	SDQ_B52
AL35 VSS AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A52 AL42 SDQ_A53 AL43 VSS AL42 SDQ_A53 AL43 VSS AL42 SDQ_A53 AL43 VSS AL5 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B14 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A23 AM15 SDQ_A31 AM16 SCB_A4 AM20 SCB_A5 AM21 SCB_B1 AM24 SCB_B3 </td <td>AL33</td> <td>VSS</td>	AL33	VSS
AL36 SCLK_B2# AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A52 AL42 SDQ_A53 AL43 VSS AL43 VSS AL43 VSS AL45 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B31 AM11 SDQ_B31 AM13 SDQ_A28 AM14 SCB_A4 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM25 SCB_B3 AM26 SCB_B3 AM27 SCLK_B0# AM3 SDQ_B35	AL34	SDQ_B53
AL37 VSS AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A52 AL42 SDQ_A53 AL43 VSS AL43 VSS AL42 SDQ_A53 AL43 VSS AL43 VSS AL43 VSS AL43 VSS AL44 SDQ_B15 AL6 VSS AL7 SDQ_B14 AM10 SDQ_B14 AM10 SDQ_B14 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A23 AM15 SDQ_A31 AM18 SCB_A4 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM25 SCLK_B0# AM29 SCLK_B0# AM3 SDQ_B35	AL35	VSS
AL38 SCLK_B2 AL39 SDQ_A48 AL41 SDQ_A52 AL42 SDQ_A53 AL43 VSS AL44 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B31 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A31 AM15 SDQ_SB0 AM20 SCB_A4 AM20 SCB_B4 AM21 SCB_B1 AM24 SCB_B0 AM25 SCB_B3 AM26 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM3 SDQ_B35	AL36	SCLK_B2#
AL39 SDQ_A48 AL41 SDQ_A52 AL42 SDQ_A53 AL43 VSS AL43 VSS AL5 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B31 AM11 SDQ_A28 AM13 SDQ_A24 AM15 SDQ_A31 AM18 SCB_A4 AM20 SCB_A5 AM21 SCB_B1 AM23 SCB_B1 AM24 SCB_B3 AM25 SCLK_B0# AM29 SCLK_B0# AM3 SDQ_B35	AL37	VSS
AL41 SDQ_A52 AL42 SDQ_A53 AL43 VSS AL5 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B16 AM11 SDQ_A24 AM15 SDQ_A31 AM16 SCB_A4 AM17 SDQ_SB0 AM18 SCB_A4 AM20 SCB_B4 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM25 SCLK_B0# AM29 SCLK_B0# AM3 SDQ_B35	AL38	SCLK_B2
AL42 SDQ_A53 AL43 VSS AL5 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B31 AM11 SDQ_A24 AM15 SDQ_A24 AM15 SDQ_A31 AM18 SCB_A4 AM20 SCB_B4 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM25 SCB_B3 AM26 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM3 SDQ_B35	AL39	SDQ_A48
AL43 VSS AL5 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B16 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A28 AM17 SDQ_A31 AM18 SCB_A4 AM20 SCB_B0 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM25 SCB_B3 AM26 SCB_B3 AM27 SCLK_B0# AM3 SDQ_B35	AL41	SDQ_A52
AL5 VSS AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B31 AM11 SDQ_A24 AM15 SDQ_A23 AM16 SCB_A4 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B1 AM25 SCB_B1 AM26 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM3 SDQ_B35	AL42	SDQ_A53
AL6 VSS AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B16 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A31 AM18 SCB_A4 AM20 SCB_B0 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM25 SCB_B3 AM26 SCB_B3 AM29 SCLK_B0# AM3 SDQ_B35	AL43	VSS
AL7 SDQ_B15 AL8 VSS AL9 SDQ_B14 AM10 SDQ_B16 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A28 AM17 SDQ_A31 AM20 SCB_A4 AM21 SCB_B0 AM23 SCB_B1 AM24 SCB_B1 AM25 SCB_B3 AM26 SCB_B3 AM27 SCLK_B0# AM3 SDQ_B35	AL5	VSS
AL8 VSS AL9 SDQ_B14 AM10 SDQ_B16 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A28 AM17 SDQ_A31 AM18 SCB_A4 AM20 SCB_B0 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM25 SCB_B3 AM26 SCB_B3 AM27 SCLK_B0# AM3 SDQ_B35	AL6	VSS
AL9 SDQ_B14 AM10 SDQ_B16 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A28 AM17 SDQ_A31 AM18 SCB_A4 AM2 SDQS_B0 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B1 AM25 SCB_B3 AM26 SCB_B3 AM27 SCLK_B0# AM3 SDQ_B35	AL7	SDQ_B15
AM10 SDQ_B16 AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A28 AM17 SDQ_A31 AM18 SCB_A4 AM2 SDQS_B0 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM3 SDQ_B35	AL8	VSS
AM11 SDQ_B31 AM13 SDQ_A24 AM15 SDQ_A28 AM17 SDQ_A31 AM18 SCB_A4 AM2 SDQS_B0 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM26 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM3 SDQ_B35	AL9	SDQ_B14
AM13 SDQ_A24 AM15 SDQ_A28 AM17 SDQ_A31 AM18 SCB_A4 AM2 SDQS_B0 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM26 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM3 SDQ_B35	AM10	SDQ_B16
AM15 SDQ_A28 AM17 SDQ_A31 AM18 SCB_A4 AM2 SDQS_B0 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B0 AM25 SCB_B1 AM26 SCB_B3 AM27 SCLK_B0# AM3 SDQS_B0#	AM11	SDQ_B31
AM17 SDQ_A31 AM18 SCB_A4 AM2 SDQS_B0 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B0 AM25 SCB_B3 AM27 SCLK_B0# AM3 SDQS_B0#	AM13	SDQ_A24
AM18SCB_A4AM2SDQS_B0AM20SCB_A5AM21SCB_B4AM23SCB_B1AM24SCB_B0AM26SCB_B3AM27SCLK_B0#AM29SCLK_B0AM3SDQS_B0#AM31SDQ_B35	AM15	SDQ_A28
AM2 SDQS_B0 AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B0 AM26 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM31 SDQS_B0#	AM17	SDQ_A31
AM20 SCB_A5 AM21 SCB_B4 AM23 SCB_B1 AM24 SCB_B0 AM26 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM3 SDQS_B0#	AM18	SCB_A4
AM21SCB_B4AM23SCB_B1AM24SCB_B0AM26SCB_B3AM27SCLK_B0#AM29SCLK_B0AM3SDQS_B0#AM31SDQ_B35	AM2	SDQS_B0
AM23SCB_B1AM24SCB_B0AM26SCB_B3AM27SCLK_B0#AM29SCLK_B0AM3SDQS_B0#AM31SDQ_B35	AM20	SCB_A5
AM24SCB_B0AM26SCB_B3AM27SCLK_B0#AM29SCLK_B0AM3SDQS_B0#AM31SDQ_B35	AM21	SCB_B4
AM26 SCB_B3 AM27 SCLK_B0# AM29 SCLK_B0 AM3 SDQS_B0# AM31 SDQ_B35	AM23	SCB_B1
AM27SCLK_B0#AM29SCLK_B0AM3SDQS_B0#AM31SDQ_B35	AM24	SCB_B0
AM29SCLK_B0AM3SDQS_B0#AM31SDQ_B35	AM26	SCB_B3
AM3 SDQS_B0# AM31 SDQ_B35	AM27	SCLK_B0#
AM31 SDQ_B35	AM29	SCLK_B0
	AM3	SDQS_B0#
AM33 SDQ_B42	AM31	SDQ_B35
	AM33	SDQ_B42
AM34 VSS	AM34	VSS

Ball	Signal Name
AM35	SDQS_B5#
AM36	VSS
AM37	VSS
AM38	SDQ_B46
AM39	VSS
AM4	SDQ_B6
AM40	SDQ_A47
AM41	SDQ_A42
AM42	SDQ_A43
AM5	SDM_B0
AM6	SDQ_B20
AM7	VSS
AM8	SDQ_B21
AM9	VSS
AN1	SDQ_B2
AN12	SDQ_B26
AN13	VSS
AN15	VSS
AN17	VSS
AN18	VSS
AN2	VSS
AN20	VSS
AN21	VSS
AN23	SCB_B5
AN24	VSS
AN26	VSS
AN27	VSS
AN29	SDQ_B33
AN31	VSS
AN32	SDQ_B47
AN4	VSS
AN40	SDQS_A5
AN42	VSS
AN43	SDQ_A46
AP10	VSS
AP12	VSS
AP13	SDQ_A29
AP15	SDQS_A3#
AP17	SDQ_A26
AP18	SCB_A0

Ball	Signal Name
AP2	SDQ_A4
AP20	VSS
AP21	SCB_A3
AP23	SDQS_B8#
AP24	SCB_B6
AP26	SCLK_B3
AP27	SDQ_B36
AP29	VSS
AP3	SDQ_B3
AP31	SDQ_B38
AP32	SDQ_A32
AP34	VSS
AP35	SDQS_B5
AP36	SDQ_B40
AP37	SDQ_B41
AP38	VSS
AP39	SDQ_A40
AP4	SDQ_B7
AP40	SDQ_A41
AP41	SDQS_A5#
AP42	SDM_A5
AP5	VSS
AP6	SDQ_B17
AP7	VSS
AP8	SDM_B2
AP9	SDQ_B22
AR1	VSS
AR10	SDQS_B3
AR12	SDQS_B3#
AR13	SDQ_B27
AR15	VSS
AR17	SDQ_A27
AR18	SCB_A1
AR2	SDQ_A0
AR20	VSS
AR21	SCB_A2
AR23	SDQS_B8
AR24	VSS
AR26	SCLK_B3#
AR27	SDQ_B32

Ball	Signal Name
AR29	SDM_B4
AR3	SDQ_A5
AR31	SDQ_B34
AR32	VSS
AR34	SDQ_A38
AR35	SDQ_B44
AR37	VSS
AR38	SDM_B5
AR39	VSS
AR41	SDQ_A44
AR42	SDQ_A45
AR43	VSS
AR5	VSS
AR6	SDQS_B2
AR7	SDQS_B2#
AR9	SDQ_B28
AT10	SDQ_B24
AT12	VSS
AT13	SDQ_A25
AT15	SDQS_A3
AT17	VSS
AT18	VSS
AT20	SCB_A6
AT21	VSS
AT23	VSS
AT24	SCB_B7
AT26	VSS
AT27	VSS
AT29	SDQS_B4
AT31	VSS
AT32	SDQ_A37
AT34	SDM_A4
AU10	SDQ_B25
AU12	VSS
AU13	VSS
AU15	VSS
AU17	VSS
AU18	SDQS_A8
AU2	SDQS_A0#
AU20	VSS

Ball	Signal Name
AU21	VSS
AU23	VSS
AU24	VSS
AU26	VSS
AU27	SDQ_B37
AU29	VSS
AU3	SDQS_A0
AU31	SDQ_B39
AU32	VSS
AU34	VSS
AU35	SDQS_A4
AU37	SDQ_A34
AU38	SDQ_B45
AU39	SDQ_A35
AU4	SDQ_A1
AU40	SCS_B1#
AU41	SCS_B3#
AU42	SODT_B3
AU5	SDM_A0
AU6	VSS
AU7	SDQ_B19
AU9	VSS
AV1	SDQ_A7
AV10	VSS
AV12	SDQ_B30
AV13	SDM_A3
AV15	SDQ_A30
AV17	VSS
AV18	SDQS_A8#
AV2	VSS
AV20	SCB_A7
AV21	VSS
AV23	VCCSM
AV24	SCB_B2
AV26	VSS
AV27	VSS
AV29	SDQS_B4#
AV31	VCCSM
AV32	SDQ_A36
AV34	SDQ_A33

Ball	Signal Name
AV35	VSS
AV37	VSS
AV38	SDQ_A39
AV4	SDQ_A6
AV40	SMA_B13
AV42	VCCSM
AV43	SODT_B1
AV6	SDQ_B23
AV7	SDQ_B29
AV9	SDM_B3
AW10	SDQ_A20
AW12	VSS
AW13	VSS
AW15	VCCSM
AW17	VCCSM
AW18	VCCSM
AW2	SDQ_A12
AW20	VCCSM
AW21	VSS
AW23	SMA_B0
AW24	VCCSM
AW26	VCCSM
AW27	SMA_A9
AW29	VCCSM
AW3	SDQ_A3
AW31	VCCSM
AW32	SCLK_A0#
AW34	VCCSM
AW35	SDQS_A4#
AW37	SMA_A13
AW4	SDQ_A2
AW40	SCS_B2#
AW41	SODT_B2
AW42	SCAS_B#
AW7	SDQ_B18
AW9	VSS
AY1	VSS
AY10	SDQ_A21
AY11	SDM_A2
AY12	SDQ_A22

Ball	Signal Name
AY14	VCCSM
AY14 AY16	SCKE B0
AY17	SCKE B2
AY19	SMA_B9
AY2	SDQ_A8
AY20	SMA_B8
AY21	SMA_B5
AY23	SBS_B1
AY24	SCKE_A3
AY25	SCKE_A0
AY27	SMA_A7
AY28	SMA_A6
AY3	SDQ_A13
AY30	SMA_A3
AY32	SCLK_A0
AY33	SMA_A10
AY34	SRAS_A#
AY37	SCAS_A#
AY38	SODT_A1
AY39	SODT_A3
AY41	VCCSM
AY42	SODT_B0
AY43	VCCSM
AY5	SDM_A1
AY6	SCLK_A1#
AY7	SCLK_A4
B10	EXP_RXN1
B11	VSS
B12	EXP_TXN1
B13	EXP_TXP1
B14	GCLKP
B16	GCLKN
B17	VCC_EXP
B18	VCC_EXP
B19	VCC2
B2	NC
B20	VCCA_EXPPLL
B20	VSS
B21 B22	VSS
B22	VSS
020	v 00

Ball	Signal Name
B24	VTT
B25	VTT
B26	VTT
B27	HSWING
B28	VSS
B3	NC
B30	HD62#
B31	HD58#
B32	HDINV3#
B33	VSS
B34	HD28#
B35	HD26#
B37	HDSTBN3#
B38	VSS
B39	HD21#
B4	VSS
B40	HD22#
B41	NC
B42	NC
B43	NC
B5	EXP_TXN6
B6	VSS
B7	EXP_TXN4
B9	VSS
BA10	SDQ_A17
BA12	SDQS_A2
BA13	SDQ_A19
BA14	SCKE_B3
BA17	SCKE_B1
BA18	SMA_B12
BA19	SMA_B7
BA2	NC
BA21	SMA_B4
BA22	SMA_B1
BA23	SBS_B0
BA25	SCKE_A2
BA26	SMA_A12
BA27	SMA_A5
BA3	SDQ_A9
BA30	SMA_A1

Ball	Signal Name
BA31	SCLK_A3#
BA32	SBS_A1
BA34	SCS_A2#
BA35	SWE_A#
BA37	SODT_A0
BA39	SCS_A3#
BA4	VSS
BA40	SCS_B0#
BA41	SWE_B#
BA42	VSS
BA5	SCLK_A1
BA7	SDQ_A14
BA9	SDQ_A10
BB1	NC
BB10	SDQ_A16
BB11	VSS
BB12	SDQ_A23
BB13	SDQ_A18
BB14	VSS
BB16	VCCSM
BB17	SBS_B2
BB18	SMA_B11
BB19	VSS
BB2	NC
BB20	VCCSM
BB21	SMA_B3
BB22	SMA_B2
BB23	SMA_B10
BB24	VCCSM
BB25	SBS_A2
BB26	SMA_A11
BB27	SMA_A8
BB28	VCCSM
BB3	NC
BB30	SMA_A2
BB31	SCLK_A3
BB32	SMA_A0
BB33	VCCSM
BB34	VSS
BB35	SCS_A0#

Ball	Signal Name
BB37	SODT_A2
BB38	VCCSM
BB39	VSS
BB4	SDQS_A1#
BB40	SRAS_B#
BB41	VSS
BB42	VCCSM
BB43	NC
BB5	SDQS_A1
BB6	VSS
BB7	SDQ_A15
BB9	SDQ_A11
BC1	NC
BC11	SDQS_A2#
BC13	VCCSM
BC16	VCCSM
BC18	VCCSM
BC2	NC
BC20	SMA_B6
BC22	VCCSM
BC24	SCKE_A1
BC26	VCCSM
BC28	SMA_A4
BC31	VCCSM
BC33	SBS_A0
BC35	VCCSM
BC38	SCS_A1#
BC4	VSS
BC40	VCCSM
BC42	NC
BC43	NC
BC6	SCLK_A4#
BC9	VSS
C10	EXP_TXP3
C12	VSS
C13	EXP_TXN0
C14	VSS
C17	VCC_EXP
C18	VCC_EXP
C19	RSV_TP5

Ball	Signal Name
C2	NC
C21	VCCA_SMPLL
C22	VSS
C23	VTT
C25	VTT
C26	VTT
C27	HSCOMP
C3	VSS
C30	HCPURST#
C31	HD59#
C32	HD60#
C34	HD57#
C35	HD55#
C37	HD24#
C39	HD52#
C4	EXP_RXP6
C40	VSS
C41	HD20#
C42	NC
C5	VSS
C7	VSS
C9	EXP_TXN3
D1	VSS
D10	VSS
D11	EXP_TXN2
D12	EXP_TXP2
D14	EXP_TXP0
D16	VCC_EXP
D17	VCC_EXP
D19	RSV
D2	VSS
D20	VSS
D21	VSS
D23	VTT
D24	VTT
D25	VTT
D27	HDVREF
D28	HACCVREF
D3	EXP_RXN6
D30	HD63#

Ball	Signal Name
D32	HD61#
D33	HD54#
D34	HD56#
D37	HD51#
D38	HD53#
D39	HD19#
D41	HREQ1#
D42	HBPRI#
D43	VSS
D5	VSS
D6	EXP_TXN5
D7	EXP_TXP5
E10	EXP_RXP3
E12	VSS
E13	VCC_EXP
E15	VCC_EXP
E17	VCC_EXP
E18	VCC
E2	RSV
E20	VSS
E21	VSS
E23	VTT
E24	VTT
E26	VTT
E27	VTT
E29	HDINV2#
E3	VSS
E31	HD48#
E32	VSS
E34	HDSTBP3#
E35	VSS
E37	HD17#
E4	VSS
E40	HD50#
E41	HREQ0#
E42	HREQ4#
E7	VSS
E9	VSS
F1	RSV
F10	EXP_RXN3

Ball	Signal Name
F12	EXP_RXN0
F13	VCC_EXP
F15	VCC_EXP
F17	VCC
F18	VCC
F2	VSS
F20	RSV_TP7
F21	BSEL0
F23	VTT
F24	HD47#
F26	VSS
F27	VTT
F29	HD39#
F31	HD37#
F32	HD29#
F34	VSS
F35	HDSTBP1#
F37	HD16#
F38	HPCREQ#
F4	EXP_TXP7
F40	HD14#
F42	VSS
F43	HD15#
F6	VSS
F7	EXP_RXP5
F9	EXP_RXN5
G10	VSS
G12	EXP_RXP0
G13	VSS
G15	VCC_EXP
G17	VCC
G18	VCC
G2	RSV
G20	VSS
G21	VSS
G23	VTT
G24	VSS
G26	HD44#
G27	VSS
G29	VSS

Ball	Signal Name
G3	VSS
G31	VSS
G32	VSS
G34	HDSTBN1#
G35	VSS
G37	HREQ3#
G38	VSS
G39	HD9#
G4	EXP_TXN7
G40	HD12#
G41	HD13#
G42	HD11#
G5	VSS
G6	EXP_RXP7
G7	VSS
G9	VSS
H10	EXP_RXN4
H12	VSS
H13	EXP_RXN2
H15	VCC_EXP
H17	VCC
H18	VCC
H20	XORTEST
H21	BSEL1
H23	VTT
H24	HD45#
H26	VSS
H27	VSS
H29	HD38#
H31	HD32#
H32	VSS
H34	HD23#
J1	RSV
J10	VSS
J12	VSS
J13	EXP_RXP2
J15	VCC_EXP
J17	VCC
J18	VCC
J2	VSS

Ball	Signal Name
J20	ALLZTEST
J21	VSS
J23	VTT
J24	VSS
J26	HD42#
J27	HDSTBP2#
J29	VSS
J3	RSV
J31	HD31#
J32	HD25#
J34	HD27#
J35	HD18#
J37	HA7#
J38	VSS
J39	HA3#
J41	HD10#
J42	HA5#
J43	VSS
J5	VSS
J6	EXP_RXN7
J7	VSS
J 9	EXP_RXP4
K10	VSS
K12	VSS
K13	VSS
K15	VCC_EXP
K17	VCC
K18	VCC
K2	RSV
K20	VSS
K21	EXP_SLR
K23	VTT
K24	HD46#
K26	HD43#
K27	VSS
K29	HD36#
K3	VSS
K31	HD34#
K32	VSS
K34	VSS

Ball	Signal Name
K35	HA6#
K36	HREQ2#
K37	VSS
K38	HA4#
K39	VSS
K4	RSV
K40	HDINV0#
K41	HDSTBP0#
K42	HD8#
K5	VSS
K6	VSS
K7	VSS
K8	RSV
K9	RSV
L1	RSV
L12	VSS
L13	VCC_EXP
L15	VCC_EXP
L17	VCC
L18	VCC
L2	VSS
L20	BSEL2
L21	RSV_TP4
L23	VTT
L24	VSS
L26	VSS
L27	HD40#
L29	VSS
L31	VSS
L32	HD30#
L4	RSV
L40	HD6#
L42	VSS
L43	HDSTBN0#
M10	VSS
M11	VSS
M13	VCC_EXP
M15	VCC_EXP
M17	VCC
M18	VCC

Ball	Signal Name
M2	RSV
M20	EXTTS#
M21	VSS
M23	VTT
M24	HD41#
M26	HDSTBN2#
M27	HD35#
M29	HCLKN
M3	VSS
M31	HCLKP
M33	HD33#
M34	HA8#
M35	VSS
M36	HADSTB0#
M37	VSS
M38	HA13#
M39	HD1#
M4	RSV
M40	HD5#
M41	HD7#
M42	HD3#
M5	VSS
M6	RSV
M7	RSV
M8	VSS
M9	VSS
N1	VSS
N10	VCC_EXP
N11	VCC_EXP
N12	VCC_EXP
N13	VCC_EXP
N15	VCC_EXP
N17	VCC
N18	VCC
N2	RSV
N20	VSS
N21	RSV_TP6
N23	ICH_SYNC#
N24	VSS
N26	VSS

Ball	Signal Name
N27	VSS
N29	VSS
N3	RSV
N31	VSS
N32	HA11#
N33	VSS
N34	HA12#
N35	HA9#
N36	VSS
N37	HA15#
N38	HA16#
N39	VSS
N41	HD4#
N42	HA14#
N43	VSS
N5	VSS
N6	VCC_EXP
N7	VCC_EXP
N8	VCC_EXP
N9	VCC_EXP
P14	VCC_EXP
P15	VCC_EXP
P17	VCC
P18	VCC
P2	RSV
P20	VSS
P21	VSS
P23	VSS
P24	VSS
P26	VSS
P27	RSV
P29	NC
P3	VSS
P30	VSS
P4	RSV
P40	HDEFER#
P41	HD0#
P42	HD2#
R10	RSV
R11	RSV

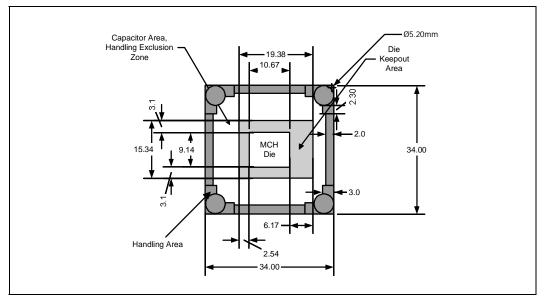
Ball	Signal Name
R12	VSS
R13	VCC_EXP
R14	VCC_EXP
R15	VCC_EXP
R17	VCC
R18	VCC
R20	VCC
R21	VCC
R23	VCC
R24	VCC
R26	VCC
R27	RSV
R29	VSS
R30	VSS
R31	VSS
R32	HA17#
R33	HA10#
R34	VSS
R35	HA20#
R36	HA18#
R37	VSS
R38	HA21#
R39	VSS
R5	VSS
R6	VSS
R7	RSV
R8	RSV
R9	VSS
T1	RSV
T2	VSS
T4	RSV
T40	HRS0#
T42	VSS
T43	HRS2#
U10	VCC_EXP
U11	VSS
U12	VCC_EXP
U13	VCC_EXP
U14	VCC_EXP
U15	VCC

Ball	Signal Name	
U17	VCC	
U18	VCC	
U19	VCC	
U2	RSV	
U20	VCC	
U21	VCC	
U22	VCC	
U23	VCC	
U24	VCC	
U25	VCC	
U26	VCC	
U27	VCC	
U29	VSS	
U3	VSS	
U30	VCC	
U31	VSS	
U32	HA24#	
U33	VSS	
U34	HA23#	
U35	HA26#	
U36	VSS	
U37	HA19#	
U38	VSS	
U39	HBNR#	
U4	RSV	
U40	HLOCK#	
U41	HHIT#	
U42	HDBSY#	
U5	VSS	
U6	VCC_EXP	
U7	VCC_EXP	
U8	VSS	
U9	VCC_EXP	
V1	VSS	
V10	RSV	
V11	VSS	
V12	VCC_EXP	
V13	VCC_EXP	
V14	VCC_EXP	
V15	VCC	

Ball	Signal Name	
V17	VCC	
V18	VCC	
V19	VCC	
V2	RSV	
V20	VCC	
V21	VCC	
V22	VCC	
V23	VCC	
V24	VCC	
V25	VSS	
V26	VCC	
V27	VCC	
V29	VCC	
V3	RSV	
V30	VSS	
V31	RSV	
V32	HA30#	
V33	HA22#	
V34	VSS	
V35	HADSTB1#	
V36	VSS	
V37	VSS	
V38	VSS	
V39	VSS	
V41	HDRDY#	
V42	HA25#	
V43	VSS	
V5	VSS	
V6	DMI_RXP0	
V7	DMI_RXN0	
V8	VSS	
V9	RSV	
W17	VCC	
W18	VCC	
W19	VCC	
W2	DMI_TXP0	
W20	VSS	
W21	VCC	
W22	VSS	
W23	VCC	

Ball	Signal Name	
W24	VSS	
W25	VCC	
W26	VSS	
W27	VCC	
W3	VSS	
W4	RSV	
W40	HTRDY#	
W41	HHITM#	
W42	HADS#	
Y1	DMI_TXN0	
Y10	VCC_EXP	
Y11	VSS	
Y12	VCC_EXP	
Y13	VCC_EXP	
Y14	VCC_EXP	
Y15	VCC	
Y17	VCC	
Y18	VCC	
Y19	VCC	
Y2	VSS	
Y20	VCC	
Y21	VSS	
Y22	VCC	
Y23	VSS	
Y24	VCC	
Y25	VSS	
Y26	VCC	
Y27	VCC	
Y29	VSS	
Y30	VCC	
Y31	VSS	
Y32	SDQ_B58	
Y33	VSS	
Y34	HA31#	
Y35	VSS	
Y36	HA27#	
Y37	VSS	
Y38	HA28#	
Y39	VSS	
Y4	DMI_RXN2	

Signal Name VSS VCC_EXP


Ball	Signal Name	Ball	Signal Name	Ball	
Y40	HEDRDY#	Y5	VSS	Y8	
Y42	VSS	Y6	VCC_EXP	Y9	
Y43	HRS1#	Y7	VCC_EXP		

10.3 Package

The MCH package measures $34 \text{ mm} \times 34 \text{ mm}$; it is a 34 mm squared, 6-layer flip chip ball grid array (FC-BGA) package. The 1202 balls are located in a non-grid pattern. Figure 10-1 through Figure 10-3 show the physical dimensions of the package. For further information on the package, see the *Intel*® *E7230 Chipset Memory Controller Hub (MCH) Thermal/Mechanical Design Guide*.

The Intel E7230 chipset has both lead-free and leaded MCH.

Note: All dimensions are in millimeters.

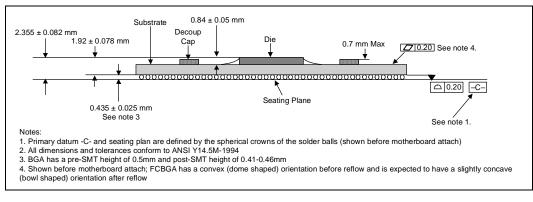
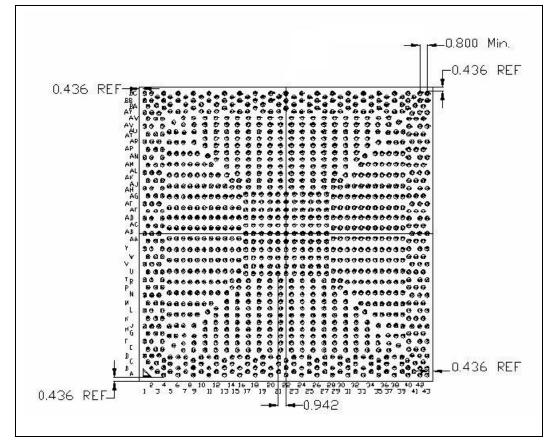



Figure 10-3. MCH Package Dimensions (Bottom View)

Note:

All dimensions are in millimeters.
 All dimensions and tolerances conform to ANSI Y14.5M-1994.

int_{el} 11 *Testability*

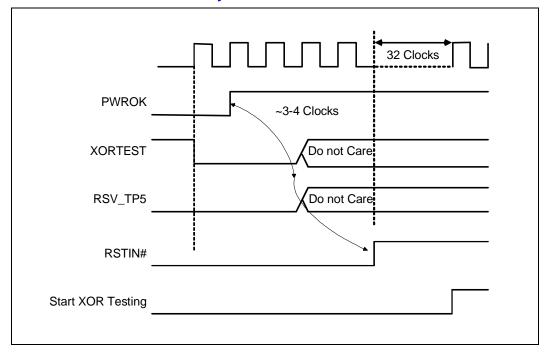
In the MCH, testability for Automated Test Equipment (ATE) board level testing has been implemented as an XOR chain. An XOR-tree is a chain of XOR gates each with one input pin connected to it.

11.1 Complimentary Pins

Table 11-1 contains pins which must remain complimentary while performing XOR testing. The first and third columns contain the pin and its compliment. The second and fourth columns specify which chain the associated pins are on.

Table 11-1. Complimentary Pins to Drive

		I	
Complimentary Pin	XOR Chain	Complimentary Pin	XOR Chain
SDQS_A0	Not in XOR Chain	SDQS_A0#	4
SDQS_A1	Not in XOR Chain	SDQS_A1#	4
SDQS_A2	Not in XOR Chain	SDQS_A2#	4
SDQS_A3	Not in XOR Chain	SDQS_A3#	4
SDQS_A4	Not in XOR Chain	SDQS_A4#	4
SDQS_A5	Not in XOR Chain	SDQS_A5#	4
SDQS_A6	Not in XOR Chain	SDQS_A6#	4
SDQS_A7	Not in XOR Chain	SDQS_A7#	4
SDQS_A8	Not in XOR Chain	SDQS_A8#	4
SDQS_B0	Not in XOR Chain	SDQS_B0#	5
SDQS_B1	Not in XOR Chain SDQS_B1#		5
SDQS_B2	Not in XOR Chain	SDQS_B2#	5
SDQS_B3	Not in XOR Chain	SDQS_B3#	5
SDQS_B4	Not in XOR Chain	SDQS_B4#	5
SDQS_B5	Not in XOR Chain	SDQS_B5#	5
SDQS_B6	Not in XOR Chain	SDQS_B6#	5
SDQS_B7	Not in XOR Chain	SDQS_B7#	5
SDQS_B8	Not in XOR Chain	SDQS_B8#	5


11.2 XOR Test Mode Initialization

XOR test mode can be entered by pulling XORTEST (H20) and RSV_TP5 (C19) low through the deassertion of external reset (RSTIN#). It was intended that no clocks should be required to enter this test mode, however, it is recommended that customers use the following sequence.

On power up, hold PWROK, RSTIN#, and XORTEST (H20) low and start external clocks. After a few clock cycles, pull PWROK high. After ~3-4 clocks, de-assert RSTIN# (pull it high). Release

XORTEST (H20) and RSV_TP5. No external drive. Allow the clocks to run for an additional 32 clocks. Begin testing the XOR chains. Refer to Table 11-1.

11.3 XOR Chain Definition

The Intel E7230 chipset has 10 XOR chains. The XOR chain outputs are driven out on the following output pins. During fullwidth testing, XOR chain outputs will be visible on both pins.

Table 1	1-2. XOR	Chain	Outputs
---------	----------	-------	----------------

XOR Chain	Output Pins	Coordinate Location
xor_out0	BSEL2	L20
xor_out1	ALLZTEST	J20
xor_out2	XORTEST	H20
xor_out3	RSV_TP5	C19
xor_out4	EXP_SLR	K21
xor_out5	RSV_TP[4]	L21
xor_out6	RSV_TP[7]	F20
xor_out7	RSV_TP[6]	N21
xor_out8	BSEL1	H21
xor_out9	BSEL0	F21

11.4 XOR Chains

Table 11-3 through Table 11-12 show the XOR chains. Table 11-13 has a pin exclusion list.

Chain	Pin Count	Ball Number	Signal Name	Comments
0	1	N23	ICH_SYNC#	
0	2	M20	EXTTS#	
0	3	J26	HD42#	
0	4	M24	HD41#	
0	5	F24	HD47#	
0	6	G26	HD44#	
0	7	K26	HD43#	
0	8	H24	HD45#	
0	9	M27	HD35#	
0	10	L27	HD40#	
0	11	J27	HDSTBPB2#	
0	12	M26	HDSTBNB2#	
0	13	K24	HD46#	
0	14	C30	HCPURST#	
0	15	H29	HD38#	
0	16	H31	HD32#	
0	17	K31	HD34#	
0	18	F31	HD37#	
0	19	K29	HD36#	
0	20	M33	HD33#	
0	21	E29	HDINV2#	
0	22	F29	HD39#	
0	23	B31	HD58#	
0	24	B32	HDINV3#	
0	25	C39	HD52#	
0	26	A33	HD49#	
0	27	B30	HD62#	
0	28	D32	HD61#	
0	29	C31	HD59#	
0	30	C32	HD60#	
0	31	D33	HD54#	
0	32	C34	HD57#	
0	33	E34	HDSTBPB3#	
0	34	B37	HDSTBNB3#	
0	35	D30	HD63#	
0	36	D38	HD53#	
0	37	E31	HD48#	
0	38	E40	HD50#	
0	39	D34	HD56#	
0	40	C35	HD55#	
0	41	D37	HD51#	1

Table 11-3. XOR Chain #0 (Sheet 2 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
0	42	B34	HD28#	
0	43	A38	HDINV1#	
0	44	B39	HD21#	
0	45	F32	HD29#	
0	46	H34	HD23#	
0	47	J32	HD25#	
0	48	C37	HD24#	
0	49	E37	HD17#	
0	50	F35	HDSTBPB1#	
0	51	G34	HDSTBNB1#	
0	52	B35	HD26#	
0	53	B40	HD22#	
0	54	J31	HD31#	
0	55	D39	HD19#	
0	56	J34	HD27#	
0	57	C41	HD20#	
0	58	L32	HD30#	
0	59	J35	HD18#	
0	60	F37	HD16#	
0	61	F43	HD15#	
0	62	K41	HDSTBPB0#	
0	63	G41	HD13#	
0	64	L40	HD6#	
0	65	M39	HD1#	
0	66	D41	HREQ1#	
0	67	K38	HA4#	
0	68	J42	HA5#	
0	69	K35	HA6#	
0	70	N34	HA12#	
0	71	N37	HA15#	
0	72	P40	HDEFER#	
0	73	U42	HDBSY#	
0	74	Y40	HEDRDY#	
0	75	D42	HBRI#	

Table 11-4. XOR Chain #1 (Sheet 1 of 3)

Chain	Pin Count	Ball Number	Signal Name	Comments
1	1	G42	HD11#	
1	2	K42	HD8#	
1	3	G40	HD12#	
1	4	L43	HDSTBNB0#	
1	5	G39	HD9#	
1	6	M42	HD3#	
1	7	J41	HD10#	

Table 11-4. XOR Chain #1 (Sheet 2 of 3)

Chain	Pin Count	Ball Number	Signal Name	Comments
1	8	P41	HD0#	
1	9	P42	HD2#	
1	10	K40	HDINV0#	
1	11	M41	HD7#	
1	12	M40	HD5#	
1	13	N41	HD4#	
1	14	G37	HREQ3#	
1	15	J39	HA3#	
1	16	K36	HREQ2#	
1	17	M36	HADSTB0#	
1	18	E41	HREQ0#	
1	19	J37	HA7#	
1	20	E42	HREQ4#	
1	21	N42	HA14#	
1	22	M38	HA13#	
1	23	R33	HA10#	
1	24	M34	HA8#	
1	25	N32	HA11#	
1	26	N38	HA16#	
1	27	N35	HA9#	
1	28	F38	HPCREQ#	
1	29	T43	HRS2#	
1	30	T40	HRS0#	
1	31	U41	HHIT#	
1	32	V41	HDRDY#	
1	33	W41	HHITM#	
1	34	W42	HADS#	
1	35	U40	HLOCK#	
1	36	Y43	HRS1#	
1	37	U39	HBNR#	
1	38	W40	HTRDY#	
1	39	R32	HA17#	
1	40	R36	HA18#	
1	41	U35	HA26#	
1	42	R35	HA20#	
1	43	U34	HA23#	
1	44	U37	HA19#	
1	45	R38	HA21#	
1	46	AA41	HBREQ0#	
1	47	Y34	HA31#	
1	48	V35	HADSTB1#	
1	49	V33	HA22#	
1	50	U32	HA24#	
1	51	V32	HA30#	
1	52	AA37	HA29#	

Chain	Pin Count	Ball Number	Signal Name	Comments
1	53	Y36	HA27#	
1	54	V42	HA25#	
1	55	Y38	HA28#	
1	56	AA42	HA33#	
1	57	AA38	HA35#	
1	58	AA34	HA34#	
1	59	AA35	HA32#	
1	60	F40	HD14#	

Table 11-4. XOR Chain #1 (Sheet 3 of 3)

Table 11-5. XOR Chain #2 (Sheet 1 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
2	1	AE42	SDQ_A60	
2	2	AD43	SDQ_A57	
2	3	AB41	SDQ_A62	
2	4	AB42	SDQ_A63	
2	5	AD40	SDQ_A56	
2	6	AE41	SDQ_A61	
2	7	AA39	SDQ_A58	
2	8	AA40	SDQ_A59	
2	9	AC40	SDM_A7	
2	10	AK40	SDQ_A49	
2	11	AL41	SDQ_A52	
2	12	AG40	SDM_A6	
2	13	AL39	SDQ_A48	
2	14	AF39	SDQ_A50	
2	15	AF42	SDQ_A55	
2	16	AF41	SDQ_A54	
2	17	AH43	SCLK_A5	
2	18	AK41	SCLK_A2#	
2	19	AN43	SDQ_A46	
2	20	AM41	SDQ_A42	
2	21	AR41	SDQ_A44	
2	22	AR42	SDQ_A45	
2	23	AP39	SDQ_A40	
2	24	AP42	SDM_A5	
2	25	AM40	SDQ_A47	
2	26	BA39	SCS_A3#	
2	27	AR34	SDQ_A38	
2	28	AP32	SDQ_A32	
2	29	AV34	SDQ_A33	
2	30	AV38	SDQ_A39	
2	31	AV32	SDQ_A36	
2	32	AT32	SDQ_A37	
2	33	AY39	SODT_A3	

Table 11-5. XOR Chain #2 (Sheet 2 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
2	34	BA34	SCS_A2#	
2	35	BB35	SCS_A0#	
2	36	BC33	SBS_A0	
2	37	AW37	SMA_A13	
2	38	BC28	SMA_A4	
2	39	AP18	SCB_A0	
2	40	AT20	SCB_A6	
2	41	AW32	SCLK_A0#	
2	42	BA26	SMA_A12	
2	43	AY25	SCKE_A0	

Table 11-6. XOR Chain #3 (Sheet 1 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
3	1	AD37	SDM_B7	
3	2	AF37	SDQ_B61	
3	3	AC35	SDQ_B63	
3	4	Y32	SDQ_B58	
3	5	AD34	SDQ_B57	
3	6	AA32	SDQ_B59	
3	7	AC34	SDQ_B62	
3	8	AJ32	SDQ_B48	
3	9	AG35	SDQ_B54	
3	10	AL34	SDQ_B53	
3	11	AL32	SDQ_B52	
3	12	AJ39	SDM_B6	
3	13	AF34	SDQ_B51	
3	14	AF32	SDQ_B50	
3	15	AJ36	SCLK_B5#	
3	16	AL36	SCLK_B2#	
3	17	AL38	SCLK_B2	
3	18	AN32	SDQ_B47	
3	19	AJ31	SDQ_B43	
3	20	AM33	SDQ_B42	
3	21	AR35	SDQ_B44	
3	22	AR38	SDM_B5	
3	23	AM38	SDQ_B46	
3	24	AP36	SDQ_B40	
3	25	AP37	SDQ_B41	
3	26	BA40	SCS_B0#	
3	27	AW40	SCS_B2#	
3	28	AU41	SCS_B3#	
3	29	AW41	SODT_B2	
3	30	AP27	SDQ_B36	
3	31	AM31	SDQ_B35	

Chain	Pin Count	Ball Number	Signal Name	Comments
3	32	AN29	SDQ_B33	
3	33	AR27	SDQ_B32	
3	34	AV40	SMA_B13	
3	35	AP24	SCB_B6	
3	36	AM27	SCLK_B0#	
3	37	BA23	SBS_B0	
3	38	BA41	SWE_B#	
3	39	AY19	SMA_B9	
3	40	BB17	SBS_B2	
3	41	BA18	SMA_B12	
3	42	BB18	SMA_B11	
3	43	BB22	SMA_B2	
3	44	BC20	SMA_B6	
3	45	AK17	RSV_TP2	

Table 11-6. XOR Chain #3 (Sheet 2 of 2)

Table 11-7. XOR Chain #4 (Sheet 1 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
4	1	AC41	SDQS_A7#	
4	2	AL42	SDQ_A53	
4	3	AE40	SDQ_A51	
4	4	AG41	SDQS_A6#	
4	5	AH40	SCLK_A5#	
4	6	AK42	SCLK_A2	
4	7	AP40	SDQ_A41	
4	8	AM42	SDQ_A43	
4	9	AP41	SDQS_A5#	
4	10	AT34	SDM_A4	
4	11	AU39	SDQ_A35	
4	12	AU37	SDQ_A34	
4	13	AW35	SDQS_A4#	
4	14	BA37	SODT_A0	
4	15	BC38	SCS_A1#	
4	16	BA32	SBS_A1	
4	17	BA30	SMA_A1	
4	18	BB32	SMA_A0	
4	19	BB31	SCLK_A3	
4	20	AY28	SMA_A6	
4	21	AY30	SMA_A3	
4	22	AV18	SDQS_A8#	
4	23	AP21	SCB_A3	
4	24	AM20	SCB_A5	
4	25	AM18	SCB_A4	
4	26	BB26	SMA_A11	
4	27	BB30	SMA_A2	

Chain	Pin Count	Ball Number	Signal Name	Comments
4	28	BB25	SBS_A2	
4	29	AY24	SCKE_A3	
4	30	AK15	RSV_TP0	
4	31	AP15	SDQS_A3#	
4	32	AR17	SDQ_A27	
4	33	AM13	SDQ_A24	
4	34	AM15	SDQ_A28	
4	35	BC11	SDQS_A2#	
4	36	BB12	SDQ_A23	
4	37	AY12	SDQ_A22	
4	38	BA10	SDQ_A17	
4	39	AY11	SDM_A2	
4	40	BC6	SCLK_A4#	
4	41	AY6	SCLK_A1#	
4	42	BB7	SDQ_A15	
4	43	AY3	SDQ_A13	
4	44	BA7	SDQ_A14	
4	45	AY5	SDM_A1	
4	46	BB4	SDQS_A1#	
4	47	AU2	SDQS_A0#	
4	48	AR2	SDQ_A0	
4	49	AV4	SDQ_A6	

Table 11-7. XOR Chain #4 (Sheet 2 of 2)

Table 11-8. XOR Chain #5 (Sheet 1 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
5	1	AD39	SDQS_B7#	
5	2	AF35	SDQ_B60	
5	3	AC32	SDQ_B56	
5	4	AG32	SDQS_B6#	
5	5	AJ34	SDQ_B49	
5	6	AD32	SDQ_B55	
5	7	AJ38	SCLK_B5	
5	8	AM35	SDQS_B5#	
5	9	AU38	SDQ_B45	
5	10	AU40	SCS_B1#	
5	11	AU42	SODT_B3	
5	12	AV29	SDQS_B4#	
5	13	AU27	SDQ_B37	
5	14	AV24	SCB_B2	
5	15	AM23	SCB_B1	
5	16	AM24	SCB_B0	
5	17	AP23	SDQS_B8#	
5	18	AM29	SCLK_B0	
5	19	AP26	SCLK_B3	

Table 11-8. XOR Chain #5 (Sheet 2 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
5	20	BB40	SRAS_B#	
5	21	AY23	SBS_B1	
5	22	BA21	SMA_B4	
5	23	AW23	SMA_B0	
5	24	BA19	SMA_B7	
5	25	BB21	SMA_B3	
5	26	AL17	RSV_TP3	
5	27	AM11	SDQ_B31	
5	28	AT10	SDQ_B24	
5	29	AU10	SDQ_B25	
5	30	AV7	SDQ_B29	
5	31	AR12	SDQS_B3#	
5	32	BA17	SCKE_B1	
5	33	BA14	SCKE_B3	
5	34	AV6	SDQ_B23	
5	35	AP9	SDQ_B22	
5	36	AP6	SDQ_B17	
5	37	AM10	SDQ_B16	
5	38	AR7	SDQS_B2#	
5	39	AJ11	SCLK_B1#	
5	40	AJ7	SCLK_B4	
5	41	AL7	SDQ_B15	
5	42	AL9	SDQ_B14	
5	43	AL12	SDQ_B11	
5	44	AG11	SDQ_B9	
5	45	AG8	SDQS_B1#	
5	46	AM3	SDQS_B0#	
5	47	AL2	SDQ_B5	
5	48	AP3	SDQ_B3	
5	49	AM4	SDQ_B6	
5	50	AK3	SDQ_B4	

Table 11-9. XOR Chain #6 (Sheet 1 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
6	1	BB37	SODT_A2	
6	2	AY38	SODT_A1	
6	3	AY37	SCAS_A#	
6	4	BA35	SWE_A#	
6	5	AY34	SRAS_A#	
6	6	AY33	SMA_A10	
6	7	BA31	SCLK_A3#	
6	8	AW27	SMA_A9	
6	9	BB27	SMA_A8	
6	10	AR18	SCB_A1	

Chain	Pin Count	Ball Number	Signal Name	Comments
6	11	AV20	SCB_A7	
6	12	AR21	SCB_A2	
6	13	BA27	SMA_A5	
6	14	AY32	SCLK_A0	
6	15	AY27	SMA_A7	
6	16	BC24	SCKE_A1	
6	17	BA25	SCKE_A2	
6	18	AL15	RSV_TP1	
6	19	AP17	SDQ_A26	
6	20	AV15	SDQ_A30	
6	21	AV13	SDM_A3	
6	22	AM17	SDQ_A31	
6	23	AT13	SDQ_A25	
6	24	AP13	SDQ_A29	
6	25	BB10	SDQ_A16	
6	26	BB13	SDQ_A18	
6	27	BA13	SDQ_A19	
6	28	AY10	SDQ_A21	
6	29	AW10	SDQ_A20	
6	30	AY7	SCLK_A4	
6	31	BA5	SCLK_A1	
6	32	BA9	SDQ_A10	
6	33	BB9	SDQ_A11	
6	34	BA3	SDQ_A9	
6	35	AY2	SDQ_A8	
6	36	AW2	SDQ_A12	
6	37	AU5	SDM_A0	
6	38	AR3	SDQ_A5	
6	39	AV1	SDQ_A7	
6	40	AW3	SDQ_A3	
6	41	AU4	SDQ_A1	
6	42	AP2	SDQ_A4	
6	43	AW4	SDQ_A2	

Table 11-10. XOR Chain #7 (Sheet 1 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
7	1	AU31	SDQ_B39	
7	2	AR31	SDQ_B34	
7	3	AR29	SDM_B4	
7	4	AP31	SDQ_B38	
7	5	AY42	SODT_B0	
7	6	AV43	SODT_B1	
7	7	AN23	SCB_B5	
7	8	AM21	SCB_B4	

Table 11-10. XOR Chain #7 (Sheet 2 of 2)

Chain	Pin Count	Ball Number	Signal Name	Comments
7	9	AT24	SCB_B7	
7	10	AM26	SCB_B3	
7	11	AR26	SCLK_B3#	
7	12	AW42	SCAS_B#	
7	13	BB23	SMA_B10	
7	14	BA22	SMA_B1	
7	15	AY20	SMA_B8	
7	16	AY21	SMA_B5	
7	17	AR13	SDQ_B27	
7	18	AN12	SDQ_B26	
7	19	AV12	SDQ_B30	
7	20	AV9	SDM_B3	
7	21	AR9	SDQ_B28	
7	22	AY16	SCKE_B0	
7	23	AY17	SCKE_B2	
7	24	AW7	SDQ_B18	
7	25	AU7	SDQ_B19	
7	26	AP8	SDM_B2	
7	27	AM6	SDQ_B20	
7	28	AM8	SDQ_B21	
7	29	AJ9	SCLK_B1	
7	30	AJ6	SCLK_B4#	
7	31	AF9	SDQ_B8	
7	32	AL10	SDQ_B10	
7	33	AG9	SDM_B1	
7	34	AJ12	SDQ_B13	
7	35	AF11	SDQ_B12	
7	36	AM5	SDM_B0	
7	37	AL3	SDQ_B1	
7	38	AN1	SDQ_B2	
7	39	AK2	SDQ_B0	
7	40	AP4	SDQ_B7	

Table 11-11. XOR Chain #8 (Sheet 1 of 3)

Chain	Pin Count	Ball Number	Signal Name	Comments
8	1	F12	EXP_RXN0	
8	2	C13	EXP_TXN0	
8	3	B10	EXP_RXN1	
8	4	B12	EXP_TXN1	
8	5	H13	EXP_RXN2	
8	6	D11	EXP_TXN2	
8	7	F10	EXP_RXN3	
8	8	C9	EXP_TXN3	
8	9	H10	EXP_RXN4	

Table 11-11	. XOR	Chain	#8	(Sheet 2 of 3)	
-------------	-------	-------	-----------	----------------	--

Chain	Pin Count	Ball Number	Signal Name	Comments
8	10	B7	EXP_TXN4	
8	11	F9	EXP_RXN5	
8	12	D6	EXP_TXN5	
8	13	D3	EXP_RXN6	
8	14	B5	EXP_TXN6	
8	15	J6	EXP_RXN7	
8	16	G4	EXP_TXN7	
8	17	F1	RESERVED	
8	18	J1	RESERVED	
8	19	K8	RESERVED	
8	20	K4	RESERVED	
8	21	M7	RESERVED	
8	22	M4	RESERVED	
8	23	L1	RESERVED	
8	24	N2	RESERVED	
8	25	R10	RESERVED	
8	26	P4	RESERVED	
8	27	R7	RESERVED	
8	28	U4	RESERVED	
8	29	T1	RESERVED	
8	30	V2	RESERVED	
8	31	V10	RESERVED	
8	32	W4	RESERVED	
8	33	G12	EXP_RXP0	
8	34	D14	EXP_TXP0	
8	35	A11	EXP_RXP1	
8	36	B13	EXP_TXP1	
8	37	J13	EXP_RXP2	
8	38	D12	EXP_TXP2	
8	39	E10	EXP_RXP3	
8	40	C10	EXP_TXP3	
8	41	J9	EXP_RXP4	
8	42	A9	EXP_TXP4	
8	43	F7	EXP_RXP5	
8	44	D7	EXP_TXP5	
8	45	C4	EXP_RXP6	
8	46	A6	EXP_TXP6	
8	47	G6	EXP_RXP7	
8	48	F4	EXP_TXP7	
8	49	E2	RESERVED	
8	50	G2	RESERVED	
8	51	K9	RESERVED	
8	52	J3	RESERVED	
8	53	M6	RESERVED	
8	54	L4	RESERVED	

Table 11-11. XOR Chain #8 (Sheet 3 of 3)

Chain	Pin Count	Ball Number	Signal Name	Comments
8	55	K2	RESERVED	
8	56	M2	RESERVED	
8	57	R11	RESERVED	
8	58	N3	RESERVED	
8	59	R8	RESERVED	
8	60	T4	RESERVED	
8	61	P2	RESERVED	
8	62	U2	RESERVED	
8	63	V9	RESERVED	
8	64	V3	RESERVED	

Table 11-12. XOR Chain #9

Chain	Pin Count	Ball Number	Signal Name	Comments
9	1	V7	DMI_RXN0	
9	2	V6	DMI_RXP0	
9	3	Y1	DMI_TXN0	
9	4	W2	DMI_TXP0	
9	5	AA10	DMI_RXN1	
9	6	AA9	DMI_RXP1	
9	7	AB1	DMI_TXN1	
9	8	AA2	DMI_TXP1	
9	9	Y4	DMI_RXN2	
9	10	AA4	DMI_RXP2	
9	11	AA6	DMI_TXN2	
9	12	AA7	DMI_TXP2	
9	13	AC8	DMI_RXN3	
9	14	AC9	DMI_RXP3	
9	15	AC4	DMI_TXN3	
9	16	AB3	DMI_TXP3	

11.5 Pads Excluded from XOR Mode(s)

Some pads do not support XOR testing. The majority of the pads that fall into this category are analog related pins (See Table 11-13).

Table 11-13. XOR Pad Exclusion List

PCI Express	FSB	SM	Miscellaneous
GCLKN	HCLKN	SRCOMP[1]	RSTIN#
GCLKP	HCLKP	SRCOMP[0]	
EXP_COMPO	HRCOMP	SMVREF[1]	
EXP_COMPI	HSCOMP	SMVREF[0]	
	HVREF	SOCOMP[1]	
	HSWING	SOCOMP[0]	
		SM_SLEWOUT[1]	
		SM_SLEWOUT[0]	
		SM_SLEWIN[1]	
		SM_SLEWIN[0]	

§

Testability